
Dissertation

Enhancing Isochrones
in Multimodal Spatial Networks

Nikolaus Krismer

submitted to the Faculty of Mathematics, Computer

Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements

for the degree of “Doctor of Philosophy”

Innsbruck, November 2017

Advisor: Univ.-Prof. Dr. Günther Specht

Abstract

Isochrones are an important tool for carrying out reachability analyses. In
Multimodal Spatial Networks they are hard to compute, since multiple modal-
ities and schedules of the public transportation systems need to be considered.
Throughout this thesis new algorithms to compute isochrones in such networks
are developed. Those include loading parts of the data source with the help of
so called tile regions as well as computations on previously calculated results.
The application capabilities of isochrones are extended by defining averaged
and time-invariant isochrones. By introducing elevation aware isochrone com-
putation the accuracy of the results is further increased. An approach that is
able to tailor isochrones to individual users is presented as well.

One of the major problems in the field of isochrone computation is the acqui-
sition of the necessary data. To address the lack of datasets on which such
calculations can be performed, a generalized dataset creation is introduced
that allows not only to create real-world models, but also to include informa-
tion from external data sources. Data is merged with information about the
public transportation system and with Digital Elevation Models that include
elevation data. To ease the visualization of computed isochrones in real-world
datasets a web-application called “IsoMap” is presented. It can be used to
vary computation parameters and for basic analyses within the results.

Contents

Abstract

Contents I

1. Introduction 1
1.1. Motivation . 1
1.2. Different Types of Reachability Analyses 3
1.3. Research Objectives and Contributions 5
1.4. Publications . 7
1.5. Thesis Outline . 9

2. Related Work 11
2.1. Publications . 11
2.2. Systems . 13

3. Defining Isochrones 19
3.1. Networks and Graphs . 19
3.2. Spatial Networks . 25

3.2.1. Transportation Networks 25
3.2.2. Multimodal Spatial Networks 27
3.2.3. Calculations in Multimodal Spatial Networks 30

3.3. Real-world Networks . 37
3.3.1. Geographical Information 38
3.3.2. Schedule Based Information 39

4. Existing Algorithms for the Computation of Isochrones 41
4.1. In-Memory Computation . 43

Contents

4.2. Incremental Expansion . 46
4.2.1. Multimodal Incremental Network Expansion 46
4.2.2. Optimizing the Memory Footprint 48
4.2.3. Loading Data using Ranges 51

5. Extending and Improving Isochrone Algorithms 59
5.1. Network Expansion Revisited 60
5.2. Batching Multiple Database Requests 61
5.3. Range Shape Variation . 64
5.4. Incremental Calculation of Isochrones 70

5.4.1. Challenges for Incremental Calculation 71
5.4.2. Types of Calculation . 72

6. Enhancements on Isochrone Application 75
6.1. Averaged Isochrones . 76
6.2. Time-invariant Isochrones . 80
6.3. Elevation Aware Isochrones . 84
6.4. User Tailored Isochrones . 88

7. Generalizing Dataset Creation 93
7.1. Street Network Extraction . 95
7.2. Public Transport Schedules . 98
7.3. Data Merging . 99
7.4. Dataset Optimization . 100

7.4.1. Elevation Data . 101
7.4.2. Computed Information 102

7.5. Exporting and Providing Datasets 103

8. The Application IsoMap 105
8.1. System Architecture . 106
8.2. Operating Principle . 107
8.3. Features of IsoMap . 109

8.3.1. Visualization of Isochrones 109
8.3.2. Vertex Expiration Information 110
8.3.3. Public Transportation System Usage 110
8.3.4. Spatial analyses . 112
8.3.5. Averaged and Time-invariant Isochrones 112
8.3.6. Traversing of Areas/Places 113

9. Evaluation 115
9.1. Evaluation System . 115
9.2. Datasets under Test . 116
9.3. Choosing the Data Structure 117
9.4. Determination of the Best Loading Ranges 119

II

Contents

9.5. Determination of the Adaptive Tile Ranges 120
9.6. Memory Experiments . 122
9.7. Runtime Experiments . 125
9.8. Break-Even Points and Network Independence 127
9.9. Elevation aware performance 129

10.Conclusion 133
10.1. Summary . 133
10.2. Future Research Directions . 134

A. Appendix 137
A.1. Way Type Classes . 137

List of Algorithms 139

List of Figures 141

List of Tables 145

Bibliography 147

III

CHAPTER 1

Introduction

1.1. Motivation

For more than one decade interactive maps play an important role in com-
puter science. With the introduction of map services from big companies like
Microsoft and Google in 2005, various applications building on them have be-
come popular in the world wide web. Besides other, two important tasks are
regularly carried out with these services: finding places and calculating routes
between two locations A and B. The latter is known as routing. Although
online maps are not the only or even first tool that enables routing compu-
tations, i.e. navigation devices by TomTom have entered the market in 2001,
these services are the ones that allow fast routing computation for everybody
who has access to the internet. Another task enabled with the help of interac-
tive maps, is the calculation of reachabilities, which deals with the areas that
can be reached within a certain time span from a query point (or vice versa
dealing with the areas from which a query point can be reached within a time
span).

Reachability plays an important role in various applications. It is important
when planning where to spend spare time or when looking for a place to
life. Governments need to take care of reachability during urban planning or

Chapter 1. Introduction

when designing public buildings like schools. For businesses such as public
transportation operators it even is a key factor for success.

The foundation to every route finding and reachability analysis is the pres-
ence of geographical data. It is necessary to have access to the data itself
in order to perform relevant queries. Advances in computer hardware allow
to store terabytes of data even on personal systems. This makes it possible
to model the whole world in detail and to store the gained information on
a single server. As a result not only big companies like Apple, Google and
Microsoft gather geographical data, but also non-commercial enterprises. One
of the most utilized, analyzed and cited Volunteered Geographic Information
(VGI)-platforms, with an increasing popularity over the past few years, is
OpenStreetMap (OSM) [86]. This community project not only allows to share
data about geographical realities, but also to use the gathered data under the
Open Data Commons Open Database License (ODbL) [96]. The license states
that the crowdsourced data is freely available without paying any additional
fee as long as the authors are attributed and the adopted data is also provided
under the same license, thus enabling scientists all over the world to work with
geographical data.

The availability of geographical information allows for the implementation of
algorithms that are tailored to real-world problems like facilitating optimized
routing rather than routing in abstract networks. Therefore, algorithms that
were developed in the 20th century, like Dijkstra’s algorithm was in 1959
[23] and A-Star in 1968 [46], were further improved to Contraction Hierar-
chies (CH) in 2008 and Customized Route Planning (CRP) in 2011. When it
comes to reachability analyses, algorithms have not been developed as quickly.
Most of the current approaches rely on Dijkstra’s algorithm and as soon as
schedules of the public transportation system come into play, advanced algo-
rithms are lacking. Hence, computation time becomes an issue. Therefore,
one of the objectives of this thesis is to evaluate currently available algo-
rithms for reachability calculation and to find ways to decrease the compu-
tation time needed besides extending isochrone application capabilities with
elevation aware computation, averaged and time-invariant calculations and
user-tailored isochrones.

Since there are multiple different types of reachability known, which are com-
puted in a very similar way, the next section lists some of them and explains
their difference, before research objectives are presented.

2

1.2. Different Types of Reachability Analyses

1.2. Different Types of Reachability Analyses

There exist multiple types of reachability analyses. At first, isodistances and
isochrones need to be distinguished. They differ in the constraint that is used
for limiting the computation.

Figure 1.1.: 2000 meter isodistance.

Isodistances use a distance
based approach to determine
the area that is reachable.
The isodistance itself is defined
as the borderline between the
reachable and the unreachable
area. The resulting isodistance
is either a circle if the infor-
mation about the road network
represented in the geographical
data is neglected or a polygon
determined by roads and ways
such as the one shown in Fig-

ure 1.1, where the reachable area is plotted as brightened area, whereas the
rest of the region is not reachable and shown as darkened area.

In contrast, isochrones use time as the limiting factor instead of distance, but
are also defined as the borderline between a reachable area (determined by
time rather than distance) and a not reachable area. Figure 1.2 shows an
unimodal isochrone, where the isochrone itself is the black border between the
darkened and the brightened area.

Figure 1.2.: Unimodal 10min isochrone
using a travel speed of 20km/h.

In a road network each way is
assigned with additional infor-
mation, e.g. with a speed limit,
that needs to be taken into ac-
count when traveling. Even ba-
sic isochrones that allow move-
ment within the data by only
one means of transportation
(so called unimodal), are more
computational intense to com-
pute than isodistances, since
additional properties, namely
the traveling speed and speed
limits connected to every way

3

Chapter 1. Introduction

(or way segment), have to be taken into account. If multiple transportation
modalities (multimodal) can be used to travel around, things get even more
complicated, e.g. when taking a car and walking by foot is allowed.

Figure 1.3.: Multimodal 10min isochrone
using a travel speed of 20km/h.

Networks can be classified as
continuous or discrete. Road
networks are typically continu-
ous in the space and time di-
mension. The edges represent
streets while the vertices refer
to junctions, signs or point of
interests (POIs). When using
the public transportation sys-
tem schedules need to be con-
sidered. Since between two
stops of a bus or train leaving
the vehicle is not possible, the
underlying data is discrete in

space and time. A possible result of a multimodal isochrone within the city of
Innsbruck, Austria, starting at the main station that also allows to travel by
buses and trams of the public transportation system is shown in Figure 1.3.

When computing isochrones in a network that is continuous in space and
time the term “Isochrone in a Continuous Network” is used. Besides the
maximal travel duration also a travel speed needs to be known in contrast to
isodistances. The term “Isochrone in a Multimodal Spatial Network” refers
to the fact the the underlying network is partially discrete in space and time.
When working in such a Multimodal Spatial Network (MMSN) the time and
speed limitations are not sufficient to compute an isochrone. Since schedules
are bound by arrival or departure time a starting date and time need to be
supplied as well. In addition, the travel direction is also important now. A
point of interest can be reachable from many places, while it may not be true
that many places are reachable from the same POI. The fact that the network
is discrete in space leads to the problem that the resulting isochrone might be
disconnected. While an isochrone in an unimodal network is always a polygon
(or a subclass, e.g. circles or squares) an isochrone in a MMSN can consist of
multiple disconnected polygons, also known as multi-polygon.

To summarize, there are at least three different methods that can be used to
perform a reachability analysis:

Isodistances are limited by a distance (typically given in meters) and are
carried out in networks that are continuous in space and time.

4

1.3. Research Objectives and Contributions

Isochrones in Continuous Networks use time as a limiting factor and are
calculated in networks that are continuous in space and time. In contrast to
isodistances a maximal travel duration and a travel speed need to be known for
the purpose of isochrone computation. Different costs on network edges, like
speed limits, have to be taken into account to estimate travel times correctly.

Isochrones in Multimodal Spatial Networks allow for traveling in space
and time-dependent networks. The underlying network is at least partially
discrete in space and time. In addition to isochrones in continuous networks,
a date and time and a travel direction (starting from or ending at the query
point) need to be set. This is mandatory in order to take care of schedule based
modes of travel like trains and buses. The resulting isochrone can consist of
multiple, possibly disconnected polygons.

1.3. Research Objectives and Contributions

The main goal of this thesis is to deal with problems in the area of reachabil-
ity analyses using isochrones. Four topics have been chosen to be addressed
in detail. The first one deals with the fact that algorithms capable to calcu-
late isochrones and the reachable area within an isochrone are computational
intense. While other geographical queries like routing are highly optimized
in terms of memory consumption and runtime, isochrones are not as easy to
compute. Therefore, the performance of algorithms is going to be analyzed
and improved. Several enhancements are made to the domain of isochrone
calculation. Besides the definition of averaged and time-invariant isochrones,
methods to tailor isochrones to individual users and computation based on
known results are discussed. Another disadvantage is that there is no stan-
dardized way to create Multimodal Spatial Networks. Doing so, information
from multiple data sources needs to be gathered and linked. This affects geo-
graphical data, e.g. adding missing information about the elevation of a point,
as well as non-geographical data, e.g. a schedule of a train. For demonstration
and display purposes and making reachability computation available to peo-
ple, a user interface is developed and presented. In particular, the following
research questions are investigated as part of the thesis at hand:

• How can algorithms capable of computing isochrones in Multimodal Spa-
tial Networks be further improved?

• What issues arise when using a time span instead of a specific moment
in time change the reachability of places?

5

Chapter 1. Introduction

• In which manner are isochrones influenced if elevation information is
taken into account?

• To what extend is it possible to compute customized isochrones for in-
dividuals?

• How can the different types of data sources be merged into a common
model in order to create a Multimodal Spatial Network?

• What could be an appropriate way to present isochrones in a visual and
interactive fashion?

The contributions of this thesis can be summarized as follows:

Algorithm Improvements. Based on the ideas developed by Bauer et al.
[9] and Gamper et al. [33, 34] various methods are evaluated and implemented
to compute isochrones. The ideas developed by M. Innerebner [51], which
include a hybrid data loading approach between the former two algorithms,
are analyzed and implemented as part of this thesis. A newly developed way to
load data from a spatial database in order to calculate isochrones is presented
while general improvements are described and applied to all those algorithms.
The runtime and memory consumption of all the presented algorithms are
evaluated and compared to each other.

Isochrone Enhancements. Some aspects that are well known in the con-
text of routing are still missing for isochrones. An obvious one when having
an undulating landscape is elevation awareness. Depending on the travel-
ing modality the difference in altitude is important. Hence, it should not be
neglected that different speed adjustments have to be made. With the infor-
mation about elevation at hand additional improvements can be made. One
that has not been done before is to tailor isochrones to individual persons.
The reachability when traveling by bike depends on how fast a cyclist can go
and this is very different depending on several factors like age and personal
fitness. Using these information a profile can be created that later is available
during isochrone creation.

Another important issue when it comes to reachability, especially when using
the public transportation system, is that it depends on the day of the week
and the time of the day. While in the morning at 8 o’clock it might be quite
fast to reach your working place by bus, it might be much slower when doing
the same at midnight. To deal with this issue averaged isochrones are defined
that aim at computing isochrones that tell if a place is reachable on average

6

1.4. Publications

in a given time span. Since there is still the possibility that something is very
fast reachable for only a relatively small amount of time within a time span,
the term “time-invariant” isochrone is introduced and explained in detail.

Generalizing Dataset Creation. Both, the enhancements to isochrones
and the improvements regarding their computation, can not be performed
without datasets that describe networks the reachability analysis is performed
in. Since there are no standards that describe how to build Multimodal Spatial
Networks, a way to gather information from various sources and to join it into
one appropriate model is introduced. The data sources have to at least deliver
information about the road network, elevation information and the schedules
from public transportation systems. To minimize the effort to build such
datasets they are provided together with the creating software application as
open-source.

User Interface Implementation. One of the biggest advantage of the
world wide web is the possibility to make information available for everybody.
Therefore, it is sensible to provide a visual interface that allows for display-
ing calculated isochrones. The visualization of the reachable area within an
isochrone and simple analysis based on it can be done using the proposed web
application. The deployment also allows to check evaluated algorithms and
their computation results at least on a basic level.

1.4. Publications

Throughout the PhD studies several research papers and posters haven been
published at national and international scientific conferences. In particular,
the following work has been published:

Conference Papers

• N. Krismer, D. Silbernagl, G. Specht and J. Gamper. Computing
Isochrones in Multimodal Spatial Networks using Tile Regions. In Pro-
ceedings of the 29th International Conference on Scientific and Statistical
Database Management (SSDBM), pages 33:1–33:6, June 2017, Chicago,
Illinois, USA [65]

• N. Krismer, D. Silbernagl, J. Gamper and G. Specht. osmPti2mmds –
Erstellung von multimodalen Datensets aus OpenStreetMap und ÖPNV-

7

Chapter 1. Introduction

Informationen. AGIT Journal, pages 185–190, July 2016, Salzburg, Aus-
tria [64]

Conference Posters

• N. Krismer, J. Gamper and G. Specht. Reachability calculation based
on average isochrones regarding time distribution. AGIT, July 2015,
Salzburg, Austria [63]

• N. Krismer, G. Specht and J. Gamper. Isochrones in Multimodal Spatial
Networks. AGIT, July 2014, Salzburg, Austria [62]

Workshop Contributions

• N. Krismer, D. Silbernagl, M. Malfertheiner and G. Specht. Elevation
Enabled Bicycle Router Supporting User-Profiles. In Proceedings of the
28th GI-Workshop Grundlagen von Datenbanken (GvDB), pages 74–79,
May 2016, Nörten Hardenberg, Germany [66]

• N. Krismer, G. Specht and J. Gamper. Incremental Calculation
of Isochrones Regarding Duration. In Proceedings of the 26th GI-
Workshop Grundlagen von Datenbanken (GvDB), pages 41–46, October
2014, Bozen-Bolzano, Italy [67]

Other Contributions

• N. Krismer. Interaktive Karten und HTTP/2. Freie und Open Source
Software für Geoinformationssysteme (FOSSGIS), July 2016, Salzburg,
Austria [58]

• N. Krismer. INNsochrone. 4. Tiroler IT-Day, May 2015, Innsbruck,
Austria [57]

Co-authored publications

• D. Silbernagl, N.Krismer, N. Augsten and G. Specht. Recommending
OSM Tags To Improve Metadata Quality. In LocalRec’17:1st ACM
SIGSPATIAL Workshop on Recommendations for Location- based Ser-
vices and Social Networks, 10 pages, November 2017, Los Angeles, Cal-
ifornia, USA [113]

8

1.5. Thesis Outline

• D. Silbernagl, N. Krismer and G. Specht. Comparing OSM Area-
Boundary Data to DBpedia. In Proceedings of the 12th International
Symposium on Open Collaboration, pages 11:1–11:4, OpenSym 2016,
August 2016, Berlin, Germany [115]

• D. Silbernagl, N. Krismer and G. Specht. osmpg2java – Konvertierung
von OSM-Datenbankelementen zu JTS-Objekten. AGIT Journal, pages
179–184, July 2016; Salzburg, Austria [116]

• D. Silbernagl, N. Krismer, M. Malfertheiner and G. Specht. Optimiza-
tion of Digital Elevation Models for Routing. In Proceedings of the
28th GI-Workshop Grundlagen von Datenbanken (GvDB), pages 103–
108, May 2016, Nörten Hardenberg, Germany [114]

1.5. Thesis Outline

The remainder of this thesis is structured as follows. The subsequent Chapter 2
describes the related work that is ongoing in the field of reachability analyses
using isochrones. It distinguishes between scientific contributions as well as
non-scientific. The later ones are further divided into commercially invented
and non-commercially developed work. Chapter 3 gives some definitions and
shows some basics used in the context of Multimodal Spatial Networks and
isochrone computation.

Chapter 4 outlines algorithms capable to create isochrones in Multimodal Spa-
tial Networks. Chapter 5 highlights innovations made regarding algorithms
during the PhD studies. Chapter 6 addresses the second research objective and
lists enhancements made to the application capabilities of isochrones. These
include usage of elevation data and tailoring results to individuals. Chapter 7
gives an overview of the workflow that is used to create datasets representing
Multimodal Spatial Networks. The web application developed throughout the
PhD studies is described in Chapter 8.

To examine the outcomes of the algorithms discussed in Chapter 4 and 5 as
well as for the enhancements made in Chapter 6 empirical evaluations are
listed in detail in Chapter 9. The thesis closes with Chapter 10 that concludes
the entire thesis and gives possible further research directives.

9

CHAPTER 2

Related Work

In this chapter an overview of work done in the field of isochrone computation
is given. Various contributions are listed ranging from scientific publications
dealing with algorithms and result visualization to non-scientific ones. Dis-
tinguishing between open-source and non-free products unimodal as well as
multimodal isochrones are discussed. Networks allowing for multimodal move-
ment are further examined for the fact if public transit schedules are used.
The systems are analyzed if they are able to make correct estimations even
on weekends and holidays or if aggregated information is used. Furthermore,
visualization of possible results is shortly discussed.

2.1. Publications

The basis of every isochrone and isodistance computation are algorithms that
were originally developed for the application of routing. However, not all algo-
rithms from this domain are suitable for isochrone calculation, since contrary
to navigation or routing only a starting or a destination point is known, but
not both locations. This excludes some algorithms optimized for routing, like
the A* algorithm [46], to be used in Multimodal Spatial Networks. Therefore,

Chapter 2. Related Work

when it comes to exact isochrone creation in such networks, the results are
typically computed in a Dijkstra like fashion.

The algorithm “MDijkstra” (Multimodal Dijkstra) developed by Bauer et al.
[9] is an adapted version of the one presented by Dijkstra in 1959 [23] and
was modified to work with multimodal information. It loads the entire spatial
network from the underlying data source into memory and performs the com-
putation solely in memory. Based on this approach Gamper et al. developed
“Mine” (Multimodal incremental network expansion) in 2011 at the Free Uni-
versity of Bozen-Bolzano (FUB) [33]. To achieve the goal of using less memory
data is loaded into memory only on demand. One year later the same authors
reduced the memory footprint by pruning processed information from memory
after it was used for computation. The resulting strategy is termed “vertex
expiration” and was first used in “MineX” (Multimodal incremental network
expansion using vertex eXpiration). This algorithm has been proven to be
optimal in terms of memory management [34]. The drawback of the latter
two approaches is the need for a fast data source connection, since the number
of requests is much higher when compared to the base approach “MDijkstra”.
These algorithms are discussed in more detail throughout Chapter 4 and will
also be included in the evaluations in Chapter 9.

Publications about applications that allow for easy isochrone determination
have also been published by M. Innerebner in 2013. The paper “ISOGA: a
System for Geographical Reachability Analysis” describes the usage of a web
browser to create isochrones within specific cities and to perform geospatial
analyses with the result [52].

There have been more ideas by the same research group from Bolzano that
were recorded in the PhD thesis of M. Innerebner which includes a descrip-
tion about an algorithm using spatial range queries [51]. Vertices are loaded
using circular ranges from the underlying database. These ranges shrink as
remaining travel time decreases and as a result propose a hybrid approach
between using minimal memory (Mine/MineX) and minimizing request to the
data source (MDijkstra).

Several publications using isochrones as basis for spatial analyses have been
published by other researches as well. Those include “nawo” [120, 123] or
“City Focus” [3, 37] that allow for finding real estates by filtering for certain
criteria like the time (or distance) to the next school, park or to public trans-
port facilities. These type of questions are called “optimal location queries”
(OL queries) [16, 25, 131]. One way to answer them, is to intersect multiple
isochrones.

12

2.2. Systems

Approaches based on recent algorithms, like Contraction Hierarchies (CH) or
Custom Route Planning (CRP), rely on network splitting. Since the splitting
process becomes very complicated when using multimodal networks and espe-
cially hard when schedules are involved, they only have been applied to uni-
modal isochrone computations [10] and computation is done solely in-memory.
Unimodal isochrones are also computed at the University of Heidelberg, where
A. Zipf and P. Neis developed the application “OpenRouteService” [85, 87].
Though originally planned for fast route finding by using Volunteered Ge-
ographic Information (VGI) [39] from OpenStreetMap the web application
enables isodistance and unimodal isochrone computation since early 2017.

Regarding the visualization of isochrones, the main task is to compute a bor-
der around all the vertices and edges in the network that are part of the result,
referred to as isoline. This is similar to the problem of finding an outline to a
set of points. Several approaches deal with this problem, including two algo-
rithms that have been implemented at the Free University of Bolzano, both
published in 2010 by S. Marciuska [73]. Other solutions include convex [1, 26,
41, 53] and concave hull [81] computation, alpha-shapes [28, 29], algorithms
based on Voronoi diagrams and Delaunay triangulations [7, 77, 132] and others
[93]. The fact that isochrones in Multimodal Spatial Networks possibly cover
multiple point sets (disconnected parts of the underlying graph), is not ad-
dressed by all the algorithms. Therefore, a preprocessing step to determine the
different point sets has to be included, that then allows to use the algorithms
on the separated parts of the graph.

2.2. Systems

Taking academic publications aside, isochrones and isodistances can be com-
puted using common software and services. This section lists open-source
and commercially available approaches. It starts from the ones being able to
compute unimodal isochrones and continues with those creating multimodal
isochrones. At last, systems are presented that work in Multimodal Spatial
Networks and regard schedules of the public transportation system.

A solution for unimodal isochrones is implemented in the so called “pgRouting”
software [103]. It builds on the spatial database extension “PostGIS” [104] that
itself is an extension to the open-source database “PostgreSQL” [119]. The
computation of so called “driving distances” (meaning the same as isochrones)
is implemented using the Dijkstra algorithm. The results from pgRouting can
be visualized using geographical information system (GIS) desktop clients like

13

Chapter 2. Related Work

QGIS [42]. Isodistances can be computed solely by GIS desktop clients, e.g.
with GRASS and its v.net.iso component [88].

Though originally developed for unimodal isochrone computation, pgRouting
can be used to compute multimodal isochrones by reorganizing the underlying
spatial data and merging all modalities into a single graph. This has been
shown for the city of Vienna by Anita Graser some years ago in 2013 [43].
The disadvantage of solutions based on pgRouting is the lack of knowledge
about the schedules of the public transportation system. Information on how
to get from one station to another is not based on actual date or time, but on
travel duration between stations. This makes it impossible to regard changing
schedules on weekends, holidays or for cities where the frequency of a service
depends on the daytime.

When the multimodal nature of a dataset needs to be addressed, but the
exactness of the results is not of great importance, services from Rome2rio
[108], Mapumental (which is also known as “mySociety travel-time maps”)
[83] and the “DB Umkreissuche” of the Deutsche Bahn [21] are available.
Rome2rio also shows the service frequency as part of the results, but still fails
to vary it between days (e.g. between a working day and a holiday) or certain
times of the day. Mapumental and the DB Umkreissuche are very limited when
it comes to geographical coverage. Right now, Mapumental is only available
for the home country of the mySociety initiative, namely Great Britain. The
DB Umkreissuche, which itself is based on the “HACON Umkreissuche” [44],
only works in the region of Germany.

Mapnificent [126] is an open-source approach very similar to the services men-
tioned before. In contrast, it uses data from OpenStreetMap and schedules
provided in the General Transit Feed Specification (GTFS) format [2, 75].

A commercial approach to allow for multimodal routing is implemented by
the “Verkehrsauskunft Österreich (VAO)” [124] for the region of Austria. Al-
though this seems to include some clever multimodal approaches (e.g. so called
“Park-and-Ride” solutions where it is only possible to drive by car to a train
station but not traveling by car after leaving the train), this services allow
for plain routing, but not for isochrone determination. Although information
about the road network that is used by the VAO (the Graphintegrations-
Plattform GIP [99]) has been released to the public in 2016, the underlying
algorithms and also the data about the public transportation system are not
available. As a result, extending the algorithms is not possible. Multiple
applications that are provided by companies and enable routing in Austria,
are based on the GIP and VAO (e.g. web applications “Routenplaner IVB”,

14

2.2. Systems

“Fahrplan VVT”, “ÖAMTC Verkehrsauskunft” or “Routenplaner bmvit”)
[124].

An open-source project aiming at multimodal routing is OpenTripPlanner
(OTP) [97]. It includes a component called “OTP Analyst” that is able to
compute multimodal isochrones. Additionally, it does take the schedules of
the transportation system into account (delivered as GTFS file) and there-
fore is able to deliver different isochrones depending on the starting date
or time. However, OTP uses a precomputed graph structure created from
OpenStreetMap data from which isochrones can be extracted. This makes its
memory footprint quite large and unsuitable for large networks. For the city
of New York the web application “WNYC Transit Time NYC” [130] has been
implemented using OpenTripPlanner. To keep the network small, the region
has been reduced to 2930 hexagons between which multimodal travel times
are computed.

Recent developments by the people behind OTP include Conveyal Analyst
[17]. It implements the same features as OTP Analyst, realized with more
modern technologies. In addition, it adds the possibility of so called scenarios,
allowing decision makers to simulate multiple “What-If” scenarios. This can
be of great benefit when planning maintenance or when placing stations to
build. The source of both tools can be found at github [18, 98]. In contrast to
OTP, which is licensed under the GNU Lesser General Public License (LGPL),
Conveyal Analyst is published under the Apache 2 license.

Another open-source project, named “GeoTrellis Transit” [4] is based on
GeoTrellis by Azavea. It uses Apache Spark and Scala to perform analyses on
raster data. Multimodal isochrones are one of them, with the uniqueness of
using accurate times, but categorizing on days of a week. Since no exact date
can be entered, one has to choose between “weekday”, “saturday” or “sun-
day”, making it impossible to regard holidays. Since a raster builds the basis
of all the analyses the results are not as accurate as they would be when using
vector data.

Similar to OTP there is another solution that started from routing and enables
isochrone computation. Graphhopper is a software library also licensed under
the Apache 2 license and enables easy integration into other projects [109].
However, the isochrone API which is built on top of the very same library, is
closed source and only available against a fee. Although in July 2017 it was
announced that it will become open-source and freely available, the code has
not been released by the end of October 2017.

15

Chapter 2. Related Work

Other solutions capable to compute multimodal isochrones with regard
to a certain start date and/or time are known to be available from
Route360◦/Motion Intelligence GmbH, a company located in Berlin, Germany
[82]. Customer solutions relying on their services, like Naturtrip [84], seem to
be very fast and use state of the art techniques. As can be seen from some
published code experiments with HTML5, WebGL and Vector Tiles are used.
Since isochrone computation is available as part of an API only and no code
about it has been published, nothing is known about the underlying algorithms
or techniques used to compute the results.

Direct competitors to Route360◦ include Walk Score’s Professional Travel
Time [125], the TravelTime Platform by iGeolise [49] and iso4app [68]. Besides
some small projects that work with Java and Docker available on github [50],
sources from iGeolise are not available. For Walk Score and iso4app only API
documentations and client libraries are available, but nothing is publicly avail-
able on the algorithms used. The consumers are able to compute isochrones
solely by web service.

The visualization of the result in the non-scientific field ranges from basic
techniques that draw a circle with a radius defined by the remaining time
around public transportation stations (Mapnificent) to advanced algorithms
like Duckham et al. (OpenTripPlanner). Newer approaches often utilize the
GPU of computer systems (Route360◦), sometimes reducing the needed effort
by rastering results (GeoTrellis Transit). What can be noticed is that all
solutions do not generate exact results. While this might be clear for the
latter approach or when drawing simple circles around stations, it has to be
noted, that even convex/concave hull computation or results created with the
help of Voronoi or Delaunay triangulations must not be exact (for Duckham
et al. the precision depends on the so called length parameter).

One of the more surprising facts is that companies heavily involved in map
generation do not provide good solutions to compute isochrones. Google for
example does not provide anything regarding isochrones in Google Maps (nei-
ther in APIs nor on the website itself). Approaches using technologies from
Google are heavily based on picking random points and computing travel time
distances to those. This is done until the travel duration reaches the appro-
priate travel time and repeated for multiple cardinal directions. If enough
directions have been computed the resulting points are connected. The result
is then claimed to be a simulated isochrone [101], but is by far less accurate
and therefore not comparable to the methods and services described before. A
similar approach has also been implemented with Bing Maps [13]. In fact this
can be done with every map provider that allows routing through an API.
However, this approach will not be incorporated, since it imposes multiple

16

2.2. Systems

problems. It is not only less accurate, it also does not deal with multimodality
correctly. Even if the underlying routing itself is carried out in a multimodal
way, results will always be connected. This is not correct, since multimodality
typically leads to reachability islands at stations of the public transportation
system.

17

CHAPTER 3

Defining Isochrones

This chapter covers the basic definitions on which the rest of this thesis is build
on. First, a formalization of the term “Multimodal Spatial Network” (MMSN)
and all the terms it builds on are given. It is further distinguished between
a reachable area and an isochrone. After listing samples, definitions in the
field of geographical networks are given. This is done in order to allow the
computation of isochrones also within real-world datasets rather than solely
relying on mathematically modeled ones.

3.1. Networks and Graphs

In our modern world networks are everywhere. A well-known example for a
network is the internet. It is the technical network between multiple com-
puters and consists of the words “Inter”, which is Latin for between, and the
abbreviation “net” for network. There are various other networks like the so-
cial networks or even the neuronal network of the human brain. The noun
“network”, as defined within Googles knowledge graph (which is a network on
its own), is “a group or system of interconnected people or things” [40]. There
are several types of different networks, like biological networks, technical and

Chapter 3. Defining Isochrones

computer networks, social networks, advertising networks and many more.
One definition for the theory about networks was given by John Baez, mathe-
matical physicist at the University of California (U.C Riverside) as “the study
of complex interacting systems that can be represented as graphs equipped
with extra structure” [5]. Although the word “graph” itself was first used by
J.J. Sylvester in 1878, graph theory goes back to Leonard Euler and the 18th
century [12]. A graph has been defined in mathematics as a set of vertices
(sometimes also called nodes) that are connected by edges (sometimes also
referred to as arcs or lines). Trudeau defined it as “a graph consists of two
sets named the vertex set and the edge set. The vertex set is a nonempty set,
and the edge set may be empty, but if not it contains two-element subsets of
the vertex set” [122]. A graph can be defined as follows.

Definition 1: Graph

A graph G = (V, E) is a pair of sets V and E. The set V is non-empty
and called the vertex set (or node set), while set E is the edge set of
graph G. An edge from E is a two-element subset of vertices from V .

There are also mathematical representations used that define a graph as a
triple. In these definitions an additional function, the so called incidence
function, is added that associates with each edge of G an unordered pair of
(not necessarily distinct) vertices of G. This definition is used for example by
Bondy [14] or West [127]. Since both definitions are used throughout literature,
Definition 1 will be used throughout this thesis. An example for a graph can
be found in Figure 3.1. The vertices in this case are named v1, v2 and v3.

v1

v2 v3

Figure 3.1.: Sample graph.

Graphs can be further categorized by various criteria. Some, but non all, of
these categorizations are listed in the following lines. First, a graph can be
distinguished by the fact that its edges can either be directed or not. Edges
are typically named by the vertices they connect. Therefore, edges are referred
to as v1v2, v2v3 and v3v1. If edges do not have an orientation (which means
that vw = wv) the graph is called an undirected graph.

20

3.1. Networks and Graphs

Definition 2: Undirected graph

If the edges in a graph G are unordered pairs of vertices, the graph is
called a undirected graph.

Figure 3.1 shows an undirected graph, since edges without specific direction
have been used. If edges are oriented and an edge from vertex v to vertex w
is not the same as the one from vertex w to v (written as vw 6= wv) the graph
is called directed (or digraph).

Definition 3: Directed graph

If the edges in a graph G are ordered pairs of vertices, the graph is called
a directed graph.

An example for a directed graph is shown in the following Figure 3.2. For an
edge (v1, v2) in a directed graph, the vertex v1 is called the start vertex and
v2 denotes its end vertex.

v1

v2 v3

Figure 3.2.: Directed graph.

Graphs also allow for two vertices u and v to be connected by more than two
edges. This means that in every direction there can be zero to arbitrary many
edges, including edges that start and end at the same vertex. These edges are
called multiple edges (or parallel edges).

Definition 4: Multiple edges

Edges connecting the same pair of vertices are called multiple edges.

Directed graphs can easily be created from undirected graphs with no semantic
change. All that needs to be done is to replace each undirected edge with
two directed edges modeling opposite directions resulting in multiple edges.
Applying this method to the graph from Figure 3.1, the result looks like the
following Figure 3.3. The edge count has doubled, so that the edges now are
v1v2, v2v1, v2v3, v3v2, v3v1 and v1v3.

21

Chapter 3. Defining Isochrones

v1

v2 v3

Figure 3.3.: Directed graph containing multiple edges.

The edges in a graph are allowed to start and end at the same vertex. If this
is the case the edge is called a loop. The following Definition 5 has been used
by [127].

Definition 5: Loop

A loop is an edge whose endpoints are equal.

In Figure 3.4 a directed graph is shown that contains multiple edges and loops.
The loop in the graph connects v2 with itself. In this example also multiple
edges have been used, that have the same direction (edge v1v3).

v1

v2 v3

Figure 3.4.: Directed graph containing multiple edges and loops.

A loop is not be confused with a cycle. In contrast to a loop, a cycle is a closed
walk in a graph starting and ending at the same vertex, i. e v1, . . . , vk, v1 with
v1, . . . , vk all distinct, and k ≥ 3. A “simple graph” does neither include
loops nor multiple edges. If a graph G is allowed to contain multiple edges
and loops the graph is called a “general graph”. So every simple graph
is a general graph, but not every general graph is a simple graph [128]. To
be more precise, a graph containing multiple edges, but no loops is called
a multigraph. If multiple edges and loops are allowed, then the graph is
called a pseudograph [6]. Furthermore, if edges are directed then the graphs
are also referred to as a multidigraph or pseudodigraph depending on the
inclusion of loops.

22

3.1. Networks and Graphs

Furthermore, a graph can be called “weighted” if there is a number associated
to each edge. The number is called the weight w of the edge e. A possible
formalization of weighted graphs has been given by J. A. Bondy [14].

Definition 6: Weighted graph

With each edge e of G let there be associated a real number w(e), called
its weight. Then G, together with these weights on its edges, is called a
weighted graph.

Weights can have different meanings in a graph. The can be used as a traversal
cost or as an indicator how important the edge is (e.g. in a friendship graph
the weight could indicate how strong a friendship is) or even some activation
potential (meaning that the edge is only valid if a certain precondition can be
met). An example of a weighted graph is given in Figure 3.5.

v1

v2 v3

0.6

0.4
1.0

0.8

0.1

0.1

Figure 3.5.: Weighted multidigraph.

A generalization for graphs is called hypergraph. It allows edges to connect
more than two vertices. Such edges are called hyperedges. These terms have
been defined for example by Papa and Markov [102].

Definition 7: Hypergraph

A hypergraph is a pair of sets H = (V, E) where V is the set of vertices of
the hypergraph and E is the set of hyperedges of the hypergraph. Each
hyperedge is a non-empty subset of V , the size of this subset is called the
hyperedge’s degree.

For road networks the hyperedges need to be ordered. Since hypergraphs
allow a hyperedge to be a subsets of V , the definition is not strict enough.
The appropriate graph to use is a oriented k-uniform hypergraph, as defined
by Frankl [31]. The definition is basically the same as for general hypergraphs
with the difference that each hyperedge is a k-tuple of distinct vertices (instead

23

Chapter 3. Defining Isochrones

of a non-empty subset of V). They are often also called hypertournaments or
oriented hypergraphs.

An example of a hypertournament containing multiple edges and loops is
shown in Figure 3.6. In this graph the hyperedge starting at v3 and end-
ing in v2 has degree four and connects the vertices v3, v22, v21 and v2. The
second hyperedge also starts at v3 and ranges to v1 via v11. Its degree is
three.

v1

v2 v3v21 v22

v11

Figure 3.6.: Hypertournament with loops and multiple edges.

For isochrone computation the most important terms of graph theory have
nearly all been covered. There are only some minor additional properties,
that will now be covered very shortly.

The degree of a vertex is given by Bondy [14] while additions about in- and
out-degree have been made by V. K. Balakrishnan [6] and by T. H. Cormen
[19].

Definition 8: Degree

The degree dG(v) of a vertex v in G is the number of edges of G con-
nected with v, each loop counting as two edges. In a directed graph, one
may distinguish the in-degree (number of incoming edges) and out-degree
(number of outgoing edges).

The size and order of a graph are a first indicator when it comes to graph
comparison. Definitions for those properties are taken from [6].

Definition 9: Order & Size

The order of a graph G is the number of its vertices. The size of a graph
G is the number of its edges.

24

3.2. Spatial Networks

3.2. Spatial Networks

A spatial network is one where vertices and edges represent spatial elements
associated with geometric objects. This is sometimes also called a geometric
graph. There are multiple samples for spatial networks:

• Biological networks of neurons in the human brain or the structure of a
molecule as well as representations of metabolic pathways [47]

• Galactic networks modeling galactic clusters, galaxies and stars

• River networks modeling the flow of rivers

• Transportation networks including road networks, railway networks and
the subway networks

Isochrone computation can be performed in every spatial network, but since
this thesis focuses on calculation of Multimodal Spatial Networks, the remain-
der targets on various transportation networks allowing multiple ways of trans-
port. In such structures edges refer to street segments, transportation routes,
escalators, walkways or railroads that connect vertices representing junctions,
public places, bus stations and other points of interest. The vertices in the
underlying graph are represented by a geographical position.

3.2.1. Transportation Networks

When it comes to transportation networks extra attributes connected to the
graph are of interest and represent geographical location, road surface or the
maximum speed allowed. Therefore, it makes more sense to write about a
transportation or road network and not a street graph, although it is quite
common to mix these terms. Furthermore, streets typically have an orientation
(e.g. one-way streets), which means that a directed graph needs to be used
to represent a road network. In a road network multiple edges are used for
various purposes. If two junctions are connected by streets as well as a sidewalk
this can be expressed with the help of two separate edges. Different means of
transportation are modeled with the help of multiple edges, where one edge is
used per transport mode. Loops can be used in road networks [90], although
this depends on the exact implementation. Roundabouts at the end of a street
could in theory be expressed by them, or the changing between different means
of transportation at a train station could be realized with the help of loops,
if the whole station is modeled as a single vertex. Changing from platform

25

Chapter 3. Defining Isochrones

1 to platform X could then be realized with this method. Even if there are
different transportation systems at the same station available, a loop could
be used to change between these systems. An example for this could be a
station where trains and subways meet. If such a station is modeled using the
very same vertex, a loop with a certain weight can model the time needed to
change between different platforms or transportation systems.

Streets in a road network have a certain length which can be used to define
the cost to traverse the edge. Also the maximum speed allowed (or both
attributes) can be used to define such a “weight”, which makes the usage of
a weighted graph obligatory. To sum up, a road network is a spatial network
that can be represented by a weighted multidigraph. A road network is not
planar as often stated. In fact it is an so called almost planar graph, meaning
that there are nearly no edges crossing each other when the underlying graph is
drawn in the plain. Only the edges representing bridges and tunnels will cross
each other, but compared to the size of the graph the number of crossing edges
will be very small [110]. An example of a road network including sidewalks,
footways, bicycle paths and streets is plotted in Figure 3.7.

Figure 3.7.: Spatial road network modeling the city center of
Innsbruck, Austria.

It can be seen that a graph is used to model this road network. The shown
data is modeled using a planar one, but as soon as the river Inn or the walk-
able shores and beaches of it are taken into account, an almost planar graph
needs to be used. As will be shown later in Chapter 7.1 the transportation
network can best be modeled with an almost planar weighted hypertourna-
ment. The weights on the hyperedges equal the maximum allowed traveling
speed. When it comes to routing and reachability computations, vertices are
only of interest, if they represent junctions, correspond to change in weight
or transport mode, or are connected to the public transportation system, i.e.

26

3.2. Spatial Networks

have at least one discrete space and time egde. By using a hypertournament
computation performance can be increased, since only start and end vertices
need to be considered, without losing information about the detailed shape of
an edge (including the length of an edge).

3.2.2. Multimodal Spatial Networks

A Multimodal Spatial Network allows to model several transport systems, pos-
sibly representing different modalities, in a single network. In order to achieve
this, each edge has to be connected to a transportation system, while multiple
edges within the underlying graph can be used for connections of multiple
transportation systems between the same vertices. This kind of network has
been defined by Gamper et al. [33] and by M. Innerebner [51]. The definitions
in this section are therefore based on and closely related to the ones given in
these publications.

As already mention in Chapter 1 a transportation network can be classified
as continuous and discrete in space and time, respectively. This leads to the
following four different transport modes:

• continuous space and continuous time mode (µ = “csct”), e.g. pedestrian
network

• discrete space and discrete time mode (µ = “dsdt”), e.g. the public
transport system with its trains and buses

• discrete space and continuous time mode (µ = “dsct”), e.g. escalators or
moving walkways

• continuous space and discrete time mode (µ = “csdt”), e.g. regions or
streets that can be passed by pedestrians or cars only in specific time
slots.

Definition 10: Transport mode

The transport mode function µ : Θ 7→ {“csct”, “csdt”, “dsct”, “dsdt”}
assigns to each transportation system a transport mode and the function
θ : E 7→ Θ connects an edge with a transportation system.

To each transport mode using discrete time (either µ = “dsdt” or µ = “csdt”)
a schedule is applied that tracks the arrival and departure time at stations
for the individual trips of a certain route. A route consists of multiple trips
which are possibly spread over different times throughout the day. This is a
grouping criteria for trips that in public transportation systems is also often

27

Chapter 3. Defining Isochrones

referred to as “Line”. Consider a sample bus route (Θ = B) named “R1”
including stops at vertices v2, v3, v6 and v7 (and maybe more). A schedule for
this transportation system and a simple Multimodal Spatial Network could
look like the one shown in Figure 3.8 and Table 3.1.

Pedestrian ’P’
Busline ’B’

v0 v1 v2 v3 v4

v5v6v7v8

v9
400 600 520 880 400

500

6001000400

500

Figure 3.8.: Spatial Network containing two modalities.

T-Sys (Θ) Route (R) Trip (TID) Stop (V) Arrival (σa) Departure (σd)
...

...
...

...
...

...
B R1 1 v2 05:30:00 05:30:00
B R1 1 v3 05:31:00 05:31:30
B R1 1 v6 05:33:00 05:33:00
B R1 1 v7 05:34:00 05:34:30
...

...
...

...
...

...
B R1 2 v2 06:00:00 06:00:00
B R1 2 v3 06:01:00 06:01:30
B R1 2 v6 06:03:00 06:03:00
B R1 2 v7 06:04:00 06:04:30
...

...
...

...
...

...

Table 3.1.: Example of a Schedule.

For computation purposes grouping trips together in routes is not of interest.
Therefore, the route information can be omitted so that schedules are charac-
terized by five attributes. A possible formalization of a schedule is therefore
listed in Definition 11.

Definition 11: Schedule

S = (Θ, TID, BV, σa, σd) is called a schedule for the transportation sys-
tem S, where TID is a set of trip identifiers, BV ⊆ V , and σa :
Θ × TID × BV 7→ T and σd : Θ × TID × BV 7→ T determine arrival
and departure time within the time domain T.

A schedule follows a time-dependent model [8, 22, 106], where the cost of an
edge is not just a scalar value, but a piece-wise linear function τ that maps
each possible arrival time from the start vertex of the edge to a travel cost.

28

3.2. Spatial Networks

The function τ is later formalized in Definition 12. For an edge e = (u, v)
this function computes the time-dependent transfer time that is required to
traverse e, when starting from u as late as possible and arriving at v no later
than time t. Pyrga et al. [106] term this the latest-departure problem (LDB),
in which the optimization criterion is to maximize the actual departure time at
the departure station among all connections that arrive at the arrival station
by the given arrival time. This problem occurs when an isochrone is computed
as the set of points from where the query point is reachable within the given
time constraints. The opposite problem is termed earliest-arrival problem
(EAP) [106], in which the optimization consists in minimizing the difference
between the arrival time and the given departure time. This problem occurs
when isochrones are defined as the set of all space points that are reachable
from the query point.

The information from a schedule is thus used to compute the time needed
to traverse an edge. For discrete time edges (i.e., µ(e) = “dsdt”) the arrival
or departure time must be considered. If the departure time is given, the
transfer time is the difference between the earliest arrival time t′ at v minus
t. If the arrival time at v is given, the transfer time is the difference between
the current time t and the latest departure time t′ at vertex u. For continuous
time edges (i.e., µ(e) = “csct”), the transfer time is modeled by a traveling
speed s : E 7→ R

+, an edge length λ : E 7→ R
+ and a time-dependent weight

function ω : E × T 7→ {(0, 1], ∞}. The weight is a function that assigns in
dependency of the time to each edge a value from the interval (0, 1] or ∞ (if
the edge cannot be traversed). The time needed to traverse an edge e is called
transfer time τ , which is defined in Definition 12.

Definition 12: Transfer time

Let t ∈ T be either the arrival time at v or the departure time at u. The
transfer time of edge e = (u, v) for the transport modes “dsdt” and “csct”
is determined by a function τ : E × T → R

+ that is defined as follows:

τ((u, v), t) =

λ(e)
s

ω(t) µ(θ(e)) = “csct”

t − t′
µ(θ(e)) = “dsdt” ∧ t is arrival time at v ∧

t′ = max{σd(r,tid,u) | σa(r,tid,v) ≤ t}

t′ − t µ(θ(e)) = “dsdt” ∧ t is departure time at u ∧

t′ = min{σa(r,tid,u) | σd(r,tid,v) ≥ t}

For the transport modes “csdt” and “dsct” the transfer time can be spec-
ified in a similar way.

29

Chapter 3. Defining Isochrones

Assuming a constant walking speed of s = 4 m/s and a constant weight

ω(t) = 1, which yields a transfer time τ(e, t) = λ(e)
4 m/s for pedestrian edges.

In Figure 3.8 with a given starting time 06:02:00, the transfer time on the
pedestrian edge (v6, v7) is 1000m

4 m/s = 250 s. The transfer time on the bus edge

(v6, v7) is 06:04:00 − 06:02:00 = 120 s, including a 60 s waiting time for the
next bus.

With the definitions of a transport mode, schedules and the transfer time given
in Definition 10, 11 and 12, it is now possible to define a Multimodal Spatial
Network (MMSN) that is able to model a transportation network allowing
multiple ways of transport.

Definition 13: Multimodal Spatial Network

A Multimodal Spatial Network is an eight-tuple N = (G, Θ, S, θ, µ, λ, τ, ω),
with

• G = (V, E) is a directed graph representing a routable spatial net-
work.

• Θ is a set of transport systems.
• S is a schedule as defined in Definition 11.
• The function θ : E 7→ Θ connects a transportation system to each

edge
• µ assigns a transport mode to each edge as formalized in Defini-

tion 10.
• λ : E 7→ R

+ records an edge’s length
• τ : the transfer time as defined in Definition 12.
• ω : E × T 7→ {(0, 1], ∞} assigns a weight to an edge.

The simple network shown in Figure 3.8 can be seen as a representative of a
Multimodal Spatial Network.

3.2.3. Calculations in Multimodal Spatial Networks

Isochrone calculations in a Multimodal Spatial Network can generally be done
in two directions. Either starting from a certain query point reaching out into
the network, which is termed “outgoing” computation, or ending at a query
point, termed “incoming” isochrone calculation. This corresponds to the dif-
ferentiation of the latest-departure and the earliest-arrival problem described
by Pyrga et al. [106] which has to be taken into account for network edges
with discrete time transportation systems (µ = “dsdt” and µ = “csdt”). For

30

3.2. Spatial Networks

the remainder of this subsection only outgoing isochrones will be considered.
Incoming computations are done in a similar way.

At first, the query point of a computation needs to be defined. It potentially
can be any point, so it is not guaranteed to coincide with a vertex or lays on
an edge of the spatial network.

Definition 14: Query point

A query point q is any point represented by coordinates.

A location, in contrast to a query point, is used to represent accessible parts
of the network. It is defined in Definition 15.

Definition 15: Location

A location in a Multimodal Spatial Network N is any point on an edge
e = (u, v) ∈ E that is accessible. It is written as l = (e, o), where
0 ≤ o ≤ λ(e) is an offset that determines the relative position of l from
u.

A location coincides with vertex u if o = 0 and vertex v if o = λ(e); any other
offset refers to an intermediate point on edge e. In continuous space networks
all points on the edges are accessible. Since a pedestrian segment is modeled
as a pair of directed edges in the opposite direction, any point on it can be rep-
resented by two locations, ((u, v), o) and ((v, u), λ(u, v) − o), respectively. For
instance, in Figure 3.9 the location of q is lq = ((v2, v3), 180) = ((v3, v2), 80).
In discrete space networks only vertices are accessible, thus o ∈ {0, λ(e)} and
locations coincide with vertices.

The first step of a calculation within a Multimodal Spatial Network is to
project query points to locations. There can be multiple different cases:

• The query point q coincides with a vertex u of the graph G if the offset
o = 0. The location representing q therefore is l = (e, 0).

• The query point does not coincide with a vertex, but is accessible from
an edge of the graph g (and therefore can be represented easily by a
location). No projection of q is needed, only the offset has to be deter-
mined. To do so, the length from the query point to the start- (ostart)
and end vertex (oend) of the edge is computed. The smaller offset is used
to create the location, so that l = (e, min(ostart, oend)).

31

Chapter 3. Defining Isochrones

• In any other case the query point q needs to be projected onto a location
l. This projection can be done, by finding the continuous space edges in
the graph G that are nearest to q. After checking the transport mode,
the projection is done by using an orthogonal line from the edge through
the query point. The crossing point of the orthogonal line and the edge
itself is the location that q is projected on. The offset of the location l
is determined as described above.

As can be seen from locations, in a spatial network, not only edges themselves,
but also accessible locations on edges are of interest. The part of an edge
between two locations on the very same edge is referred to as edge segment as
defined in Definition 16.

Definition 16: Edge segment

An edge segment, (e, o1, o2), with 0 ≤ o1 ≤ o2 ≤ λ(e) represents the
contiguous set of space points between the two locations (e, o1) and
(e, o2) on edge e. The length function for edge segments is generalized as
λ((e, o1, o2)) = o2 − o1.

Computations in a transportation network, such as way findings or reachability
analyses, typically deal with more than only one edge or edge segment. In most
of the cases a routing result ranges over more edges. Such a union of edges
and edge segments is called path. Its definition is given in Definition 17.

Definition 17: Path

A path from a source location ls = ((v1, v2), os) to a destination location
ld = ((vk, vk+1), od) is defined as a sequence of connected edges and edge
segments, p(ls, ld) = 〈x1, . . . , xk〉, where x1 = ((v1, v2), os, λ((v1, v2))),
xi = (vi, vi+1) for 1 < i < k, and xk = ((vk, vk+1), 0, od)).

The first and the last element in a path can be edge segments, whereas all
other elements are entire edges. Edges along a path may belong to different
transport systems, which implies a switch into a different transport system.

In Figure 3.9, a path from q to v7 is to walk to v3 and then to take the bus
’B’ from v3 to v7, i.e., p(lq, v7) = 〈x1, x2, x3〉, where x1 = ((v3, v2), 0, 80) is an
edge segment and x2 = (v6, v3) as well as x3 = (v7, v6) are complete edges.
The visual representation of this path is illustrated in Figure 3.9 as follows.

To compare paths, a criteria has to be defined that can be calculated for every
path. Different measures exist that can be used, i.e. the path length, the

32

3.2. Spatial Networks

Pedestrian ’P’
Busline ’B’

v0 v1 v2 v3 v4

v5v6v7v8

v9
400 600 520 880 400

500

6001000400

500

q

σa(B, 2, v7) = 06:04:00 σa(B, 2, v6) = 06:03:00

σd(B, 2, v3) = 06:01:30

80

Figure 3.9.: Path in a network.

number of different modalities of the path or its average travel speed could be
used. When it comes to isochrone computation, the needed time for traversal
is the most important part, so the criteria builds on the transfer time of the
edges included in the path. With an arrival time (or departure time depending
on the computations direction) t at the location ld the path cost is defined as
follows in recursive Definition 18.

Definition 18: Path cost

The cost of a path p(ls, ld) = 〈x1, . . . , xk〉 with t as arrival time
at location ld (or departure time at location ls) is the sum of the
individual transfer times τ of all edges and edge segments (x1 to
xk) in the path. The number of edges is referred to as k, i.e.

γ(〈x1, . . . , xk〉, t) =

τ(xk, t) k = 1

τ(xk, t) + γ(〈x1, . . . , xk−1〉, t−τ(xk, t)) k > 1 ∧

t = arr. time at ld

τ(x1, t) + γ(〈x2, . . . , xk〉, t+τ(x1, t)) k > 1 ∧

t = dep. time at ls

If the path consists of a single edge or edge segment (k = 1), function τ
computes the cost of traversing this edge, depending on whether t is arrival
or departure time. If the path 〈x1, . . . , xk〉, contains more than one edge
or edge segments, the transfer time for the last edge (or edge segment), xk,
is determined if t is arrival time at ld and the cost of the first edge (or edge
segment), x1, if t is departure time at ls. For the remaining path, the function γ
is called in a recursive way with a new arrival or departure time. The recursion
terminates when the path only contains a single edge (or edge segment).

33

Chapter 3. Defining Isochrones

With the help of the Definition 18, the cost of the path shown above in
Figure 3.9 can now be computed. The resulting cost is the one of the
path p(lq, v7) = 〈((v2, v3), 0, 160), (v3, v6), (v6, v7)〉 using a departure time
t = 06:00:00 at location lq and a constant walking speed of 4 m/s.

The cost of traversing this path (where t′ is the earliest possible departure
time) is:

γ(p(lq, v7), 06:00:00) = τ(((v2, v3), 0, 160), 06:00:00) + γ(p(v3, v7), t′)

= 40 s + γ(〈(v3, v6), (v6, v7)〉, 06:00:00 + 40 s)

= 40 s + γ(〈(v3, v6), (v6, v7)〉, 06:00:40)

= 40 s + τ((v3, v6), 06:00:40) + γ(〈(v6, v7)〉, t′)

= 40 s + (50 + 90) s + γ(〈(v6, v7)〉, t′)

= 40 s + 140 s + γ(〈(v6, v7)〉, 06:03:00)

= 40 s + 140 s + 60 s

= 240 s

In line 5 the calculation of the transfer time on the discrete edge (v3, v6)
with departure time at v3 uses the earliest departure after 06:00:40. Since
the first bus that matches this constraint departs at 06:01:30 and arrives at
06:03:00, we have a waiting time of 50 seconds at v3, and the transfer time is
τ((v3, v6), 06:00:40) = 50 s + (06:01:30 − 06:03:00) = 140 s. Thus, the waiting
time for a bus is included in the path cost. Notice that with a different starting
time from q, e.g., t = 06:01:00, the path cost might be significantly different
due to the changed transfer time on discrete time edges and no bus connection
recorded in the corresponding schedule.

In most networks there are multiple different paths from a source to a des-
tination. Therefore, another cost is needed to record the minimal cost of all
paths between two vertices. This cost is called the “network distance” and it is
defined as the cost of the shortest path from a source location to a destination
location as follows.

Definition 19: Network distance

The network distance d(ls, ld, t), from a source location ls, to a destination
location ld, with t being the departure time at ls (the arrival time at ld),
is defined as the minimum of all path costs from ls to ld with departure
time t at ls (arrival time t at ld). If such a path does not exists the
network distance is defined as ∞.

34

3.2. Spatial Networks

Since the path cost is measured in terms of transfer time, the same holds true
for the network distance. The network distance therefore records the transfer
time required from a source to a destination (with t being the departure time
at the source/the arrival time at the destination).

With the help of the network distance it is now possible to define a reachable
area. For outgoing computations, this area covers all locations that are reach-
able from a query point q (or covers all locations from which q is reachable
for incoming computations) under the given time constraints. The following
Definition 20 formalizes it.

Definition 20: Reachable area

Let N be a Multimodal Spatial Network as defined in Definition 13, G the
graph representing N, Q be a set of query points with departure time (or
arrival time) t, x be an edge (segment) and dmax > 0 be a maximal travel
duration. Furthermore, let d̂(q, l, t) = d(q, l, t) be the network distance
from q to l with t being the departure time at q for outgoing computations
(or let d̂(q, l, t) = d(l, q, t) be the network distance from l to q and t is the
arrival time at q for incoming computations). Then the reachable area
N ra = (V ra, Era) is defined as the minimum and possibly disconnected
accessible part that consists of a subgraph of G together with a possibly
empty set of edge segments and satisfies the following conditions:

• V ra ⊆ V ,
• ∀l((∃x ∈ Era(x = (e, o1, o2) ∧ 0 ≤ o1 ≤ o ≤ o2 ≤ λ(e)))),

⇔ (l = (e, o) ∧ e ∈ E ∧ ∃q ∈ Q(d̂(q, l, t) ≤ dmax))

The first condition requires the vertices of the reachable area to be a subset
of the vertices of the Multimodal Spatial Network. The second condition
constrains the reachable area to cover exactly those locations l with a network
distance d(l, q, t) from (or to) its closest q ∈ Q that is smaller than or equal
to dmax. The usage of edge segments in Era is used to represent partially
reachable edges. Whenever an edge e is entirely covered by an isochrone, e
instead of (e, 0, λ(e)) is used.

Depending on the transport modes of the transportation systems used the
reachable area can have various properties. For spatial networks that allow
traveling solely on continuous space edges (µ = “csct” or µ = “csdt”) the area
will exist of a single connected part only. As soon as any path contains one or
more discrete space edges (µ = “dsct” or µ = “dsdt”) the resulting reachable
area is possibly, but not necessarily, disconnected.

35

Chapter 3. Defining Isochrones

In Figure 3.10, the parts in bold represent the reachable area for a maximal
travel duration dmax = 5 min and a departure time t = 06:06:00 from q.
The numbers in parentheses are the network distance from q for every vertex.
Edges close to q are entirely reachable, whereas edges further away are only
partially reachable. Partially reachable edges are labeled with the offset of the
reachable portion from the edge’s start vertex and are modeled with the help
of edge segments. For instance, on edge (v0, v1) only locations within an offset
of 160 meters are reachable from q within the given time constraints.

Pedestrian ’P’
Busline ’B’

v0 v1 v2 v3 v4

v5v6v7v8

v9
400 600 520 880 400

500

6001000400

500

160

260
340

240

120520760160

qv0(340s) v1(240s) v2(90s) v3(40s) v4(260s)

v5(330s)v6(180s)v7(240s)v8(340s)

v9(360s)

Figure 3.10.: Reachable area (dmax=5min, s=4m/s and t = 06:01:00)

More formally, the reachable area is represented by the following set of vertices
and edges:

V ra = {v3, v2, v6, v1, v7, v4},

Era = {((v0, v1), 160, 400), ((v8, v1), 260, 500), ((v2, v1), 360, 600),

((v1, v2), 0, 600), ((v3, v2), 0, 520),

((v2, v3), 0, 520), ((v4, v3), 0, 880),

((v3, v4), 720, 880), ((v5, v4), 340, 500), ((v9, v4), 240, 400),

((v5, v6), 120, 600), ((v7, v6), 520, 1000),

((v6, v7), 720, 1000), ((v8, v7), 160, 400)}.

An isochrone in a Multimodal Spatial Network is defined on top of a reachable
area within the same network. It is the borderline that separates the possible
disconnected reachable area from the rest of the network. Its formalization is
given in Definition 21.

Definition 21: Isochrone

An isochrone is the set of lines that separate the reachable area N ra from
the rest of the network. The borders contain all the locations that are
reachable from the nearest query point q (all the locations from which
the nearest query point q is reachable).

36

3.3. Real-world Networks

The isochrone can be computed from a reachable area with several algorithms.
Besides alpha shape and concave hull algorithms, approaches have been dis-
cussed that use the edges from the graph rather than the vertices [73]. An
isochrone can also be created by shrinking a rectangle of the size of the en-
tire network as long as edges from the reachable area N ra are obtained and
no further contraction is possible. The needed operation is well known as
“erodation” in the field of morphological image processing.

3.3. Real-world Networks

In the previous section only a very simple Multimodal Spatial Network has
been used. In fact most networks created from geographical data are of multi-
modal nature. Even the transportation network shown in Figure 3.7 contains
more than one modality. Since this network illustrates a region within the
center of the city of Innsbruck, the capital city of the area of Tyrol, located
in Austria, it is also created from geographical data. Adding information
about the public transportation system makes it a true Multimodal Spatial
Network.

Figure 3.11 shows a Multimodal Spatial Network with two transportation
systems, Θ = {’P’, ’B’}, representing the pedestrian network with mode
µ(’P’) = “csct” and bus network ’B’ containing two routes ’A’ and ’C’ with
mode µ(’B’) = “dsdt”, respectively. Solid lines are segments of the pedestrian
network. Dashed violet lines represent edges of the bus network. For reasons
of simplicity the weights and lengths of the edges are not plotted.

Pedestrian ’P’ Busline ’B’

Figure 3.11.: Multimodal Spatial Network modeling
the city center of Innsbruck.

37

Chapter 3. Defining Isochrones

As already mentioned in Section 2, many applications use OpenStreetMap
(OSM) to acquire data about real-world networks. If information about the
public transportation system, like schedules and locations of stations, are
merged with data representing the road network from OSM, then a Multi-
modal Spatial Network can be created for various regions around the globe.
In theory this makes it possible to compare reachability across various cities,
countries or even continents.

Although this seems straight forward there are multiple pitfalls. First, there
is no official public transportation system in every city. As soon as urban
areas get smaller, e.g. a village, this issue might be the main problem. Even if
there is such a transportation system, there is no guarantee that information
about it is usable. Data about the road network or the public transportation
system might not be digitized, the digital format used might not be suitable,
the data quality might be poor or the usage of the information might not be
allowed due to some restriction. At the time of writing, this is a big issue
for public transportation systems around areas in the middle of Europe and
Africa, but totally different for regions in the United States of America. Bigger
cities in the U.S. provide data about their public transportation system as
files implementing the General Transit Feed Specification (GTFS) to describe
schedule based information [2, 75].

3.3.1. Geographical Information

Even if there is data about the road network and the public transportation
system available, data has to be stored in a comparable format. Although this
might sound simply, when it comes to geographical data this is a non trivial
task. The earth is often thought of as a sphere. A sphere models the reality
better than a flat surface, but in geographical terms this model is still far from
ideal and not exact. Because of this, the earth is modeled as a geoid. For this
purpose, multiple reference systems, have been established around different
areas of the world. A single reference system would be much too complicated
to be exact. The needed conversions make it hard to compare coordinates
exactly, since there is a need to convert the compared coordinates in a uniform
projection. Some standards use the terms Spatial Reference System (SRS) or
Coordinate Reference System (CRS) to refer to a specific reference system,
although they can be further classified into unprojected systems and projected
ones.

A well-known and often used geographic coordinate system (GCS) is the World
Geodetic System 1984 (WGS84) (also known as “EPSG:4326”, since it also has
been specified by the European Patroleum Survey Group (EPSG)). It uses lat-

38

3.3. Real-world Networks

itude and longitude to define coordinates that specify points on the surface of
the earth (x, y and maybe also a z coordinate). Latitude and longitude are
only perfectly suitable at the equator, but get more and more inaccurate as
soon as locations are near to the north or south pole. All GCS have in com-
mon that their coordinates are defined on a three dimensional surface, which
makes it hard to compute or compare certain measurements, such as distances.
Even on a simple sphere, the Pythagorean theorem does not apply and the
distance between two points is defined as a greater circle distance, which is
much harder to compute than on a two dimensional flat surface. Therefore,
also projected coordinate systems (PCS) have been defined to enable easy
computations. PCS are systems where coordinates representing places on the
three dimensional earth have been transformed into a two dimensional flat
surface. A widely used PCS is the one specified by “EPSG:3857“ also re-
ferred to as web mercator. This projection is used by most companies, like
Google within Google Maps, Microsoft within Bing Maps or OpenStreetMap.
It transforms coordinates into a rectangular plain. However, computations
need to be carried out with care to not mix up coordinates across different
reference systems.

GCS and PCS are referred to with the help of a spatial reference identifier
(SRID). Only with knowledge about geographical coordinates together with
the SRID comparisons within spatial information is possible. All systems
that deal with geographical information, have to know about SRIDs and their
definition which contains rules on how to transform coordinates in different
reference systems. This also holds true for geographical databases that store
datasets which are used for isochrone computation within Multimodal Spatial
Networks. [48]

3.3.2. Schedule Based Information

Multiple competing standards exist that are used to describe schedule based
information like the information within the public transportation system. The
situation has been well described by S. Kaufmann in 2014 [55]:

“In Europe, the development of data models for data exchange within and
in between transit operators began in the late 1980s, resulting in the ÖPNV-
Datenmodell in Germany and Cassiope [...] Both influenced the pan-european
Transmodel [...] which was ultimately standardized as EN 12896:2006. Trans-
model as a reference data model served as a basis for European standard
implementations, such as the TransXChange standard used for bus schedules
in the United Kingdom, and the Service Interface for RealTime Information
(SIRI) standard [...].

39

Chapter 3. Defining Isochrones

Despite all these different standards, vendor-specific data models still play a
prominent role when encountering route network and schedule data. On the
German market, “HaCon Fahrplan-Auskunfts-System” (HAFAS) and “Dialog-
gesteuertes Verkehrsmanagement- und Auskunftssystem” (DIVA) are two of
the major software suites used by public transit agencies — one using a doc-
umented exchange format, the other a format with no publicly available doc-
umentation whatsoever.

Despite there never being one transit data model adopted by any world-wide
regulatory body, in recent years, “General Transit Feed Specification” (GTFS)
has become some kind of de-facto standard widely used within the open data
community. First developed by Portland’s TriMet transit agency together
with Google, it is now used by Google’s Transit Planner as well as a growing
number of transit application by third parties.”

The last three years did not change the situation that much. GTFS is still
the de-facto standard and it is used by a growing number of transit agencies.
For most of the cities in the U.S. schedules are available in GTFS format.
Recently, also agencies within the middle of Europe start to provide data in
this standard. Therefore, geographical data can be merged with information
from GTFS file in order to create Multimodal Spatial Networks. Therefore,
reachability can be calculated throughout various regions of the world. More
information on how this can be done is given in Chapter 7 that explains a
workflow creating a dataset with information taken from OpenStreetMap and
GTFS files.

40

CHAPTER 4

Existing Algorithms for the
Computation of Isochrones

In general, there are multiple various approaches available to compute routes
and isochrones within graphs and different networks. This chapter focuses on
already known algorithms that are capable to compute reachable areas within
Multimodal Spatial Networks (MMSN) as defined in the previous Chapter 3.
New approaches also able to work in MMSN are further discussed in Chap-
ter 5. The visualization and isochrone computation itself is later explained
in Chapter 8. The memory consumption and runtime comparisons within
different spatial networks is part of Chapter 9.

The algorithms described throughout this thesis have many things in common.
They are based on Dijkstras algorithm [23] and are not only able to compute
reachable areas in unimodal, but also multimodal networks. The difference
between computing a reachable area and an isochrone can be seen from the
definitions in Chapter 3. An isochrone is just the borderline of a reachable area.
Since many papers mix these terms, it should be noted, that although the term
“isochrone computation” is used, in fact the reachable area is computed.

Chapter 4. Existing Algorithms for the Computation of Isochrones

All the following algorithms use a network expansion strategy, but differ in
the way they handle memory:

• A memory based approach (called MDijkstra) loads the entire network
into memory and performs network expansion there.

• Multimodal Incremental Network Expansion (Mine) reduces the memory
needed by loading data from an underlying data source, i.e. a spatial
database, on demand.

• Vertex Expiration frees memory as early as possible to further reduce the
computation footprint. The approach was developed by Gamper et al.
and resulted in an algorithm named Multimodal Incremental Network
Expansion using vertex eXpiration (MineX) [34].

• MineX has been proved to be optimal in terms of memory consumption,
but introduces the need for many data source accesses. To find a hybrid
approach between MDijkstra and MineX, Innerebner described an algo-
rithm loading multiple data points at once using circular areas. This
approach has been named “Multimodal Incremental Network Expansion
loading Ranges using vertex eXpiration (MineRX)” [51]. The approach
can also be used without vertex expiration, which is known as algorithm
MineR.

Summarizing, there were five different algorithms available, before research
lead to enhanced algorithms that are described in Chapter 5:

• MDijkstra
• Mine and MineX
• MineR and MineRX

Different configurations can be used by all the algorithms, e.g. if the reachable
area should be computed with incoming or outgoing direction, if it should
use all the modalities in the spatial network or if the computation should be
performed unimodal without schedule-based data. Also the traveling speed,
various speed estimation models (more about these models will be described
in Chapter 6) and the starting (or for incoming direction the destination) date
and time can be configured.

42

4.1. In-Memory Computation

4.1. In-Memory Computation

The first algorithm able to compute reachable areas within Multimodal Spatial
Networks was presented at the ACM GIS conference in 2008 by Bauer et
al. [9]. At that time the underlying networks were referred to as “multi-
modal, schedule-based transport networks”, which basically means the same
thing as the current definition of MMSN. Another minor difference is that
the paper describes incoming isochrone computation, while during this thesis
outgoing calculations are discussed. The work by Bauer et al. uses “isochrone
computation” although it relates to the calculation of a reachable area. Since
the algorithm is the one most similar to the original algorithm by Dijkstra, it
has been named “Multimodal Dijkstra Network Expansion” (or MDijkstra) by
M. Innerebner [51]. The pseudo code of MDijkstra is listed in Algorithm 1.

Algorithm 1: Algorithm MDijkstra(q, dmax, s, t, N)
input : q, dmax, s, t, N

output : Era, V ra

1 O ← {(vi,∞) | vi ∈ V };
2 C ← ∅;

// project query point to start location (if necessary)

3 if q coincides with v then

4 O ← (O \ {(v,∞)}) ∪ {(v, 0)}; // update the duration of v in O to 0
5 else

6 P = {(v, u) | e ∈ E : de = min
∀x∈E

dist(q, x) }; // find edge(s) with min distance

7 foreach e = (v, u) ∈ P do

8 O ← (O \ {(u,∞)}) ∪ {(u, o/s)};
// add segments from q to edge (u, v) and to start vertex on edge

9 Era ← Era ∪ {((q, o), 0, λ(q, o)), ((u, v), max(0, ((o/s)− dmax)), o)};

// network expansion

10 while O 6= ∅ ∧ (v, dv)← dequeue(O) ∧ dv ≤ dmax do

11 O ← O \ {v};
12 C ← C ∪ {v};
13 foreach e = (v, u) ∈ E do

14 dT emp← dv + τ(e, t + dv); // dv => duration from q to v
15 if u /∈ C then

// set (maybe new) minimal duration du from q to vertex u
16 O ← (O \ {(u, du)}) ∪ {(u, min(du, dT emp))};

// output continuous edge segments only

17 if µ(θ(e)) ∈ {“csct”, “csdt”} then

18 if dT emp ≤ dmax then

19 Era ← Era ∪ {(e, 0, λ(e))}; // full segment

20 else

21 Era ← Era ∪ {(e, o, λ(e))}, where d((e, o), q, t) = dmax; // partial segment

22 V ra ← V ra ∪ {(v, dv)};

43

Chapter 4. Existing Algorithms for the Computation of Isochrones

This algorithm requires the following input parameters: the query point q,
the maximal duration dmax, the maximum travel speed s, the starting date
and time t as well as the Multimodal Spatial Network N. At the beginning
of the algorithm the whole network is loaded into memory. Then it uses two
data stores to compute the reachability within the network. The first store,
called O (or the set of open vertices), represents an ordered data structure that
holds the network vertices which have not yet been expanded by the network
expansion. The second store, called C (or the set of closed vertices) holds all
the vertices that have already been expanded. The variable dv represents the
minimal duration from the initial query point q to vertex v and is computed
for all vertices in O ∪ C. It is also referred to as the network distance from q
to v (or d(q, v, t)). During network expansion it is updated to guarantee that
the shortest path is used to reach every vertex with minimal traveling time,
making the algorithm a greedy one [19].

At the very beginning of the algorithm, the two data stores O and C are
initialized. The ordered store O is initialized with all the vertices from the
network, setting all vertex network distances to infinity (line 1). The store C
is initialized to the empty set and will be filled on network expiration later in
the algorithm (line 2). Then, the query point is mapped to a location within
the network. In the simpler case the query point coincides with a vertex and
all that has to be done is to update the duration for the matching vertex (line
4). In the more complex case, when q does not coincide with a vertex, the
query point is projected to locations on the nearest edges to q (line 9). After
the query point projection, the network expansion starts (line 10).

The vertex v with the smallest network distance is retrieved from O by calling
the dequeue operation on it. The dequeue operation of the sorted set guaran-
tees that always the vertex with the current minimal duration from the query
point is used. The vertex is then removed from O and added to C. Then the
edges starting at (or for incoming isochrones all edges ending in) the vertex
v are retrieved. All of them are processed in a loop (line 13). For each edge
e = (u, v), the network distance to the adjacent vertex u is updated, if it has
not already been closed (meaning not already moved to the closed set) and
is smaller than the previous network distance of the vertex. If the edge is
a street edge also the temporary duration dTemp is computed, since partial
edges could be part of the resulting reachable area. However, this is not done
for discrete edges, since partial discrete edges are not possible (e.g. one can
not leave a moving train between two stations). The result itself is also again
only made up of vertices (line 22) and continuous edges (line 19 for fully and
21 for partial reachable edges), but not discrete edges. The reason for this is
again the fact that one can not leave a discrete edge in between (e.g. when
traveling by plane from New York to Vienna) and that discrete vertices are

44

4.1. In-Memory Computation

always connected by continuous edges (e.g. an airport is always reachable by
car and/or by foot). The algorithm terminates as soon as O becomes empty
or the duration of the vertex retrieved from it exceeds dmax.

Regarding the runtime performance of the algorithm several things can be
noted. The query point projection to network vertices is mandatory for MDi-
jksta and all the algorithms discussed throughout this thesis. The time needed
of this part stays the same for all of them. The main problem of MDijkstra is
that it is not scalable in terms of memory, since the whole network is loaded
and added to the data source O. Therefore, the initial loading time heavily
depends on the network size and the memory consumption is very high, re-
sulting in the fact that MDijkstra is not suitable for huge networks, including
Multimodal Spatial Networks of large areas. The implementation of O can be
done by multiple data structures. Since the network distances to (or from)
vertices are regularly changed, the sorting order of the used structure has to
deal with this fact. A priority queue or a binary heap therefore suitable for
O, but they are not as good for C. For the latter variable only insertion and
searching for containment is important. Here either using an attribute within
a vertex instance makes sense (a simple boolean flag) or using a hash table
that offers constant complexity O(1) for both operations. The complexity of
the MDijkstra algorithm itself is mostly connected to the queue used, when
using a binary heap it is O((m + n) ∗ log(n)) [76], with m being the number
of edges |E| within the graph and n corresponding to the number of vertices
|V |.

M. Innerebner described three extensions and improvements regarding the
MDijkstra [51] algorithm. One of them is to use an interval-based schedule
management instead of an instance-based one, while another is to batch queries
to get schedules. The latter approach gets all schedules regarding one vertex
u for its adjacent vertices at once, and not neighbor-by-neighbor. The third
suggestions is to implement the algorithm independently from the underlying
data source, so that various spatial databases can be used (i.e. Oracle Spa-
tial or PostgreSQL/PostGIS). All of these extensions have been implemented
and are part of IsoMap described in Chapter 8. The results plotted in the
evaluation in Chapter 9 also make use these improvements.

45

Chapter 4. Existing Algorithms for the Computation of Isochrones

4.2. Incremental Expansion

To address the disadvantage of loading the entire network into main memory,
three incremental approaches were developed at the Free University of Bozen-
Bolzano (FUB) that are presented in the following sections.

4.2.1. Multimodal Incremental Network Expansion

The first method has been suggested by Gamper et al. [33] in 2011. The
algorithm described is named “Multimodal Incremental Network Expansion“
(Mine) and was presented at the International Conference on Information and
Knowledge Management (CIKM).

Mine is very similar to MDijkstra as can be seen in Algorithm 2. Changes
between those two algorithms are highlighted in blue. In contrast, the set O is
initialized to the empty set at the very beginning of the procedure (line 1). It is
first filled in the query point projection. On network expansion steps vertices
that have not been explored yet, but are connected to the currently explored
vertex v, are loaded from the underlying data source with an infinite network
distance (line 15). As vertices get loaded as soon as they are needed (and not
earlier), this approach is also referred to as “on demand” or “vertex-by-vertex”
loading. Besides these two differences, the algorithm does exactly the same
steps as MDijkstra. However, these changes are sufficient to drastically change
the runtime behavior.

46

4.2. Incremental Expansion

Algorithm 2: Algorithm Mine(q, dmax, s, t, N)
input : q, dmax, s, t, N

output : Era, V ra

1 O ← ∅;
2 C ← ∅;

// project query point to start location (if necessary)

3 if q coincides with v then

4 O ← {(v, 0)}; // update the duration of v in O to 0

5 else

6 P = {(v, u) | e ∈ E : de = min
∀x∈E

dist(q, x) }; // find edge(s) with min distance

7 foreach e = (v, u) ∈ P do

8 O ← {(u, o/s)};
// add segments from q to edge (u, v) and to start vertex on edge

9 Era ← Era ∪ {((q, o), 0, λ(q, o)), ((u, v), max(0, ((o/s)− dmax)), o)};

// network expansion

10 while O 6= ∅ ∧ (v, dv)← dequeue(O) ∧ dv ≤ dmax do

11 O ← O \ {v};
12 C ← C ∪ {v};
13 foreach e = (u, v) ∈ E do

14 if u /∈ {O ∪ C} then

15 O ← O ∪ {(u,∞)};

16 dT emp← dv + τ(e, t + dv); // dv => duration from q to v
17 if u /∈ C then

// set (maybe new) minimal duration du from q to vertex u
18 O ← (O \ {(u, du)}) ∪ {(u, min(du, dT emp))};

// output continuous edge segments only

19 if µ(θ(e)) ∈ {“csct”, “csdt”} then

20 if dT emp ≤ dmax then

21 Era ← Era ∪ {(e, 0, λ(e))}; // full segment

22 else

23 Era ← Era ∪ {(e, o, λ(e))}, where d((e, o), q, t) = dmax; // partial segment

24 V ra ← V ra ∪ {(v, dv)};

47

Chapter 4. Existing Algorithms for the Computation of Isochrones

If a computed reachable area is relatively small in relation the datasets size
(i.e. 10min maximal duration with a maximal traveling speed of 5m/s in the
city of Berlin). Mine achieves much better runtime than MDijkstra. The cause
for this is simply that although more queries are sent to the underlying data
source, less memory is required to handle the results. The biggest advantage
of Mine is that it is able to compute reachable areas and isochrones within
very large datasets that would otherwise not fit into memory. However, as
traveling speed and/or maximal duration increased, Mine gets slow and there
is a break-even point, where MDijkstra gets faster for all networks that fit into
memory. The complexity of the algorithm is the same as for MDijkstra [51].

Although this algorithm is able to deliver results in very large networks, this
does not hold true for large reachable areas. Because the vertices that have
been processed still stay in memory, the limiting factor now is the size of
the computed area. Vertices are added to C in line 12 and their existence is
checked in line 14, but no vertex is ever removed from C. Therefore, Mine is
able to work in very large networks, but not to compute very large results.

4.2.2. Optimizing the Memory Footprint

To further reduce the memory footprint of isochrone computations in Mul-
timodal Spatial Networks, a new technique called vertex expiration was in-
troduced by Gamper et al. in 2012 at the 24th International Conference on
Scientific and Statistical Database Management (SSDBM) [34]. The Mine al-
gorithm was improved with this technique which led to the name “Multimodal
Incremental Network Expansion using vertex eXpiration“ (MineX).

MineX is listed in Algorithm 3. Changes between Mine and MineX are high-
lighted in blue. The idea behind vertex expiration is to purge a vertex from
memory as early as possible, without the need to re-load it from the underly-
ing data source. As has been proven by Gamper et al. a closed vertex, u ∈ C,
can be expired if all its neighbors are either closed or expired (depending on
the direction “neighbors” refers to all the in-neighbors that are connected via
an edge (v, u) or all out-neighbors that are connected via an edge (u, v)). In
order to do so, each vertex is assigned with a counter that keeps track of the
connected edges that have been traversed (lines 3, 7 and 14). With the help of
the counter, that is initially set to the incoming vertex degree (or depending
on the traveling direction the outcoming vertices) and reduced as soon as one
of its neighboring vertices is expanded, it is possible to know when a vertex
will not be needed anymore. As soon as this very counter reaches zero, the
recording vertex can be removed from memory and also deleted from set C
(lines 18 and 28).

48

4.2. Incremental Expansion

Algorithm 3: Algorithm MineX(q, dmax, s, t, N)
input : q, dmax, s, t, N

output : Era, V ra

1 O ← ∅; C ← ∅;

// project query point to start location (if necessary)

2 if q coincides with v then

3 O ← {(v, 0, cntv)}; // update the duration of v in O to 0

4 else

5 P = {(v, u) | e ∈ E : de = min
∀x∈E

dist(q, x) }; // find edge(s) with min distance

6 foreach e = (v, u) ∈ P do

7 O ← {(u, o/s, cntu)};
// add segments from q to edge (u, v) and to start vertex on edge

8 Era ← Era ∪ {((q, o), 0, λ(q, o)), ((u, v), max(0, ((o/s)− dmax)), o)};

// network expansion

9 while O 6= ∅ ∧ (v, dv, cntv)← dequeue(O) ∧ dv ≤ dmax do

10 O ← O \ {v};
11 C ← C ∪ {v};
12 foreach e = (u, v) ∈ E do

13 if u /∈ {O ∪ C} then

14 O ← O ∪ {(u,∞, cntu)};

15 dT emp← dv + τ(e, t + dv); // dv => duration from q to v
16 if u /∈ C then

// set (maybe new) minimal duration du from q to vertex u
17 O ← (O \ {(u, du)}) ∪ {(u, min(du, dT emp))};

// decrease counter of adjacent vertices (and expire them if possible)

18 cnt← cntu − 1; // cntu refers to the current counter value of vertexs u
19 if u ∈ C ∧ cnt = 0 then

20 C ← C \ {u};
21 else

22 O ← (O \ {u, du, cntu}) ∪ {u, du, cnt};

// output continuous edge segments only

23 if µ(θ(e)) ∈ {“csct”, “csdt”} then

24 if dT emp ≤ dmax then

25 Era ← Era ∪ {(e, 0, λ(e))}; // full segment

26 else

27 Era ← Era ∪ {(e, o, λ(e))}, where d((e, o), q, t) = dmax; // partial segment

// decrease counter of expanded vertex (and expire it if possible)

28 cnt← cntv − 1;
29 if v ∈ C ∧ cnt = 0 then

30 C ← C \ {v};
31 else

32 O ← (O \ {v, dv, cntv}) ∪ {v, dv, cnt};

33 V ra ← V ra ∪ {(v, dv)};

49

Chapter 4. Existing Algorithms for the Computation of Isochrones

The most notable property of MineX and its vertex expiration is that it is
optimal in the sense that only portions of the network are loaded that will
become part of the isochrone, and each edge is loaded only once [34].

With the help of the two sets O and C and the counter introduced by the vertex
expansion, each vertex can be assigned to one of three disjoint groups:

• open vertices (O)
• closed vertices (C)
• expired vertices (X)

A vertex in the O group is part of the O set and has not been expanded yet.
In the group C, vertices that have already been expanded, are kept as long as
their counter has a value greater than zero. It is important that they are not
removed from memory to prevent cyclic expansions or loading the same vertex
multiple times from the underlying data source. As soon as a vertex decreases
its counter to zero, it is expired and becomes part of the X set, which is not
kept in memory.

Although it has been shown that vertices can not be expired according to a
least recently used (LRU) strategy [34], most Multimodal Spatial Networks
created from geographic data are of similar structure to a spider or grid net-
work. In these networks vertex expiration typically results in lines that exist
of the various vertex groups: vertices contained in the open group at the very
outside of each reachable area, closed but not yet expanded vertices just a
layer afterwards, while most of the remaining vertices belong to the expired
group and form the center of the reachable area. This behavior is illustrated
in Figure 4.1 and Figure 4.2. It shows open vertices from the O group in black,
closed ones from C in gray and expired data from the X group in white. For
Figure 4.1 the edges are plotted without direction (so they can be passed in
both directions). For the LRU same the dotted edge refers to a discrete bus
edge.

q v

(a) LRU

q

(b) Grid

q

(c) Spider

Figure 4.1.: Expiration in synthetic networks.

50

4.2. Incremental Expansion

(a) Bolzano (b) Innsbruck

Figure 4.2.: Expiration in real-world networks.

The complexity of the MineX algorithm stays the same as the one for Mine
and for MDijkstra. However, the memory consumption is less and so MineX is
able to compute reachable areas in very large networks even when the resulting
area is huge. The main disadvantage of MineX is that it still needs to access
the underlying data source a lot of times (for each vertex at least one time, if
schedules of public transportation systems are involved, sometimes even more
often).

4.2.3. Loading Data using Ranges

To address the disadvantages of the previous Mine and MineX algorithms, hy-
brid approaches between MDijkstra and these algorithms have been described
[51]. The proposed approach performs initial network loading and expansion
just like Mine(X) does, but reduces the number of calls to the underlying data
source, by loading the network in portions. These portions (also referred to as
chunks) load multiple vertices at once. As soon as a vertex is retrieved from the
network, circular ranges around the queried vertex are created that are used
for loading. These loading ranges are defined by a center, which corresponds
to the queried vertex, and a radius that is bounded by the remaining travel
time available. The algorithm then utilizes spatial database functionality to
load all the vertices within the circular range. Already loaded information
are stored in memory, so that during network expansion only data not already
loaded before, produce the need to communicate with the data source. Besides
the different loading approach using chunks, the algorithms network expansion
is identical to the one of Mine(X). Since circular ranges are used for loading
the algorithm is named “Multimodal Incremental Network Expansion loading
Ranges (using vertex eXpiration)” or MineR(X). It is given in pseudo code in
Algorithm 4, while changes between MineX and MineRX are highlighted in
blue.

51

Algorithm 4: Algorithm MineRX(q, dmax, s, t, N)
input : q, dmax, s, t, N

output : Era, V ra

1 O ← ∅; C ← ∅; Q← ∅; R← ∅; T ← ∅;

// project query point to start location (if necessary)

2 if q coincides with v then

3 O ← {(v, 0, cntv)}; // update the duration of v in O to 0
4 else

5 P = {(v, u) | e ∈ E : de = min
∀x∈E

dist(q, x) }; // find edge(s) with min distance

6 foreach e = (v, u) ∈ P do

7 O ← {(u, o/s, cntu)};
// add segments from q to edge (u, v) and to start vertex on edge

8 Era ← Era ∪ {((q, o), 0, λ(q, o)), ((u, v), max(0, ((o/s)− dmax)), o)};

// network expansion

9 while O 6= ∅ ∧ (v, dv, cntv)← dequeue(O) ∧ dv ≤ dmax do

10 O ← O \ {v};
11 C ← C ∪ {v};

// load vertices by using a range query

12 if degree(v) = 0 then // v is seed

// create circle with center v and radius rv...

13 rv ← (dmax − dv) ∗ s;
14 T ← makeCircle(v, rv);
15 foreach (v′, rv′) ∈ R do

// ...and subtract previous ranges to prevent loading v multiple

times

16 if dǫ(v, v′) < rv + rv′ then

17 T ← T \R ∩ ρ(v′, rv′);

18 R← R ∪ {(v, rv)};
19 Q← queryInRange(T); // issue range query using circular range T
20 foreach (u′, v′) ∈ Q do

21 if u′ /∈ {O ∪ C} then

22 O ← O ∪ {(u′,∞, cntu′)};

23 if v′ /∈ {O ∪ C} then

24 O ← O ∪ {(v′,∞, cntv′)};

// continue expansion like MineX would (starting from line 12)

25 foreach e = (u, v) ∈ E do

26 if u /∈ {O ∪ C} then

27 O ← O ∪ {(u,∞, cntu)};

28 dT emp← dv + τ(e, t + dv);
29 if u /∈ C then

30 O ← (O \ {(u, du)}) ∪ {(u, min(du, dT emp))};

31 cnt← cntu − 1;
32 if u ∈ C ∧ cnt = 0 then

33 C ← C \ {u};
34 else

35 O ← (O \ {u, du, cntu}) ∪ {u, du, cnt};

36 if µ(θ(e)) ∈ {“csct”, “csdt”} then

37 if dT emp ≤ dmax then

38 Era ← Era ∪ {(e, 0, λ(e))};
39 else

40 Era ← Era ∪ {(e, o, λ(e))}, where d((e, o), q, t) = dmax;

41 cnt← cntv − 1;
42 if v ∈ C ∧ cnt = 0 then

43 C ← C \ {v};
44 else

45 O ← (O \ {v, dv, cntv}) ∪ {v, dv, cnt};

46 V ra ← V ra ∪ {(v, dv)};

4.2. Incremental Expansion

The set R holds the centers of all issued range queries. The information from
R is then used to subtract overlapping parts with previously performed queries
(line 17). For this a newly created circular range is first stored in set T . From
it overlaps are subtracted with the help of R. Then the range recorded in T is
used to issue a range query (which is not necessarily circular anymore, since
parts have been cut out) in line 19. The set Q is used to hold the resulting
vertices from the last range query (line 19. The vertices in O are then added
to the open set O (after double-checking if parts have already been loaded).
The rest of the algorithm works similar to MineX.

Using ranges during network expansion has multiple advantages. In general,
circular shapes reflect a reachable area quite well. This is especially true if
mostly continuous parts of the network are used. In the best case, when only
continuous edges are traversed, only a single range query is needed to load all
the vertices reachable. The radius of the circle can be easily determined by
the traveling speed and the remaining time available (at the very beginning
equal to maximal travel duration dmax), i.e. if a person starts from query
point q with a maximal traveling speed of 5 km/h and a maximal duration
of 5 minutes, then the circle covering all vertices reachable has a radius of
approximately 417 meters, since v = (s/t) => s = v ∗ t = 5[km/h] ∗ 5[min] =
(5000[m]/3600[s]) ∗ 300[s] => s = 416, 6[m].

As soon as discrete edges need to be considered, mostly always multiple queries
are needed to compute the reachable area within the network. The reason for
this is, that a discrete edge involves schedules that are able to reach trans-
portation stations most probably not part of the circular ranges already loaded.
Since schedules are defined by time and not speed, the upper bound of the
circle’s radius is not applicable for discrete edges. However, the number of
queries to the underlying data source needed is less when compared to Mine
and MineX. Figure 4.3(a) shows a unimodal query without discrete edges
where all vertices are loaded within one query, while Figure 4.3(b) shows a
query including multiple modalities and discrete edges, that result in multiple
queries.

53

Chapter 4. Existing Algorithms for the Computation of Isochrones

(a) Unimodal range loading (b) Multimodal range loading

Figure 4.3.: MineR(X) query ranges in Innsbruck
(travelspeed = 4.5km/h and dmax = 5min).

To determine if an expanded vertex has already been loaded by a previous
range or if it was used to trigger a new query, its degree is significant (line
19). If the reachability is computed for outgoing direction, then the out-degree
is used, while for incoming directions, the in-degree is of importance. If the
degree of interest is zero, then at least one of the surrounding vertices has
not been loaded from the data source before. Therefore, another request to
the data source is needed (line 12 and the vertex with degree = 0 becomes
a seeding vertex (or simply a seed) for the next range query. To prevent
vertices from being loaded multiple times, i.e. when a vertex v is positioned in
the middle of two previously loaded seeds with a radius big enough to cover v,
already loaded ranges are subtracted from the circles created by new seeds (line
17). To enable this behavior all seeds are kept in a sorted set R together with
the radii used (line 18). After this subtraction process, the remaining circular
range is queried (line 19). Loading ranges this way incorporates the data
source itself, since it has to be able to deliver all vertices in a specific range.
Therefore, a spatial database is needed when using MineR(X) in contrast to
the algorithms before. The database has to implement geometric functions
to build circles and operators to check for inclusion within a geometric shape.
This can be ensured by checking for support of the “OpenGIS Implementation
Specification for Geographic information - Simple feature access” [91], the
“SQL/MM specification” [118] or similar specifications.

Loading vertices in chunks has several effects for MineR(X). Since information
about a vertex is only a few bytes in size, loading multiple at once fills up
transferred block sizes better. When loading vertex-by-vertex at least one

54

4.2. Incremental Expansion

block is needed. Depending on the hardware used the block size transferred
from a storage holder (a database or a file on a drive) may vary, but usually is
more than only a few bytes. For hard disk drives a block size typically is 512
bytes, for specialized drives even 4 kilobytes, so querying for a vertex is not
efficient. Transferring hundreds or thousands of vertices utilizes block size a lot
better. When it comes to disk-locality chunks are advantageous as well. If the
data source holding the vertices is clustered in the way that geographically
near points are sequentially stored, the access to the data is more or less
sequential and not single queries having the nature of random (disk) accesses.
Sequential reading reduces I/O costs and utilizes caching mechanisms of the
involved storage devices better.

Another advantage of loading ranges is that their size can be optimized to fit
a special purpose. While systems holding a lot of memory allow for loading of
huge circles containing thousands of vertices, systems with only a few bytes of
main memory may choose to load only ranges with hundreds of data points,
even when the traveling duration and/or speed is high. Constraints can not
only be applied to single ranges, but to the whole algorithm as well. Decreasing
the radius of the loaded ranges not solely by the remaining travel duration,
but also with a maximal amount of vertices permitted to be in memory, allows
to reduce the algorithms memory footprint and makes it better suitable for
systems with small memory. However, in the worst case MineR(X) behaves
like Mine(X) and loads each vertex with a single query.

To allow limitation by memory, the algorithm has to know about the number
of vertices that would be loaded by a certain range query. Therefore, some
additional precomputations are needed when using constraints. In particular,
the number density needs to be computed for every vertex that can trigger
the loading of a range and become its center. The number density is defined
as the number of specified objects per unit. The considered unit refers to the
circular range while the specified object corresponds to a vertex. The result
of the precomputing looks like Table 4.1 and its illustration in Figure 4.4.

55

Chapter 4. Existing Algorithms for the Computation of Isochrones

Vertex Density Radius
v1 100 100
v1 200 165
v1 300 230
v1 400 280
v1 500 340
v1 600 420
...

...
...

v123 100 300
v123 200 600
v123 300 750
v123 400 800
v123 500 880
v123 600 960
...

...
...

Table 4.1.: Precomputed
vertex number densities.

Figure 4.4.: Precomputation of radii for
vertex number densities.

With the knowledge about the radii when using circular ranges, e.g. vertex v1

loads exactly 200 vertices when using a radius of 165 meters, it is possible to
always load the same amount of data. Using interpolation allows to use un-
known density values, e.g. when loading 250 vertices. However, there remain
two major problems with this precalculation step. At first, it is computational
intense. Although optimization techniques have been applied to this precal-
culation [51], it still takes up to multiple hours for a dataset representing a
country when only using ten different density values with a maximal density of
only 1000. Second and even more problematic is the selection of good values
for the density. While higher values increase computation time even more and
might not be meaningful for some areas, values too low will only be helpful for
systems with very small block sizes or tiny amounts of memory. High values
in rural areas might range up to the nearest congested area, while in dense
places low values will only be distinguishable within some small changes in
radii.

Besides problems with the precomputation there are several disadvantages in-
troduced by MineR(X). First, it builds upon geometric operations. As a result,
a spatial database supporting those kind of operations is a hard requirement
and the need to correctly deal with coordinate reference systems adds to the
algorithms complexity. Transforming coordinates adds overhead and effects
the runtime of the computation. Although the number of queries issued is

56

4.2. Incremental Expansion

smaller when compared to Mine(X), every single query is more complex. Han-
dling intersecting ranges again adds to the algorithms runtime. Using circles
also has a negative effect on database index operation. Spatial data is in-
dexed with the help of its minimum bounding rectangle, also known as the
bounding box of the geometric data. Database operators therefore ensure con-
tainment of a point or vertex in another shape, by a two step procedure. First,
the bounding boxes of the shape and point are compared by using an index
operator [92]. After that additional mathematical operations, like distance
computation to the center of the shape and comparison with its radius, might
need to be performed to check for containment within or intersection with the
shape. Using circular ranges can not only be based on index operations, since
it always needs additional checks. Each intersecting circle adds one additional
check to every query.

Loading data in ranges leads to some problems regarding memory consump-
tion. At first, the ranges have to be kept in memory to prevent information
from being loaded multiple times. Second, the vertices loaded by a range are
not always reachable by edges and will be kept in the set O of the algorithm
until the computation is finished (such vertices are called false positive loaded
ones). False positives are never being released from memory by a possible en-
abled vertex expiration mechanism. Besides reserving memory this behavior
also has bad effects on computation time. For programming languages using
garbage collection, like Java or Python, these vertices have to be checked if
they can be freed within a garbage collection process and therefore, the false
positively loaded vertices also reduce computation performance.

57

CHAPTER 5

Extending and Improving
Isochrone Algorithms

While in Chapter 4 algorithms have been discussed, which were developed at
the Free University of Bozen-Bolzano (FUB), now algorithms introduced by
the author of the thesis at hand, are presented. Enhancements regarding the
isochrone application capabilities that have been established by the author,
are later given in Chapter 6.

In the first section, findings are presented that improve computation runtime
in general. The performed changes have been applied to all the algorithms
presented throughout this thesis. Then, three newly developed algorithms are
explained that address shortcomings and target to reduce the time needed to
compute isochrones. They are termed in the same way as the algorithms from
the previous Chapter 4:

• Algorithm MineRB is a variation of the MineR postboning and batching
multiple circular ranges as long as possible to further reduce the com-
munication with the data source. The variation has been named “Mul-
timodal Incremental Network Expansion loading Ranges in Batches”
(MineRB). It is described in Section 5.2.

Chapter 5. Extending and Improving Isochrone Algorithms

• Algorithms MineT and MineTX : The circular ranges used by MineR(X)
seem to be optimal in terms of reachability by foot, but are difficult to
compute. Spatial databases use rectangular shapes, so called bounding
boxes, to index geometrical and geographical data. Therefore, load-
ing rectangular shapes allows to directly use the database indices. An
approach using rectangles for loading (so called tiles) has been termed
“Multimodal Incremental Network Expansion loading Tiles (using ver-
tex eXpiration)” (MineT(X)) and has been published by Krismer et
al. at the 29th International Conference on Scientific and Statistical
Database Management (SSDBM 2017) [65]. The two algorithms MineT
and MineTX are explained in Section 5.3.

In Section 5.4, a method is explained that allows to compute isochrones based
on previously calculated results. This addresses the problem that all the algo-
rithms always start the calculation from scratch without the knowledge about
previously performed computations. The approach has been named “incre-
mental calculation”.

5.1. Network Expansion Revisited

The network expansion is a very important part of isochrone computation,
since it applies to all the algorithms. Therefore, it has been studied in detail,
including profiling techniques that lead to new insights. These are presented
in this section.

As mentioned before, there are two data structures used during network ex-
pansion. The set of loaded vertices O and the set C of already expanded
vertices. Since the order of vertices in O is changed throughout computation,
such that the vertex that will be expanded next is the one with the shortest
duration to the initial query point q, the data structure needs to be optimized
for such re-orderings. There are multiple ways to optimize for this. One thing
that should be prevented is re-sorting the structure after every change. This
takes quit some time and is suboptimal in terms of performance. Another
possibility is to remove the vertex with the old duration and to re-add it with
the updated one. This leads to two much simpler operations. It can be easily
seen that a simple data structure, like a sorted array or even a sorted list, is
not optimal for this purpose, since both operations would be of complexity
O(n). A tree could do both operations in O(log(n)), providing a much better
solution. However, a tree would be slower, when dequeueing from the struc-
ture (lists and arrays would have a complexity of O(1), while a tree sticks
to O(log(n))). A much better data structure to use is a heap or a priority

60

5.2. Batching Multiple Database Requests

queue that is backed by a heap. By taking advantage of the fact that network
distances to the vertices d is always greater or equal to zero and that it is only
decreased, but never increased, an optimized implementation can be found.
M. Freedman and R. Tarjan developed a specific data structure exactly for this
purpose in 1987 at the University of California in San Diego. They named it
Fibonacci Heap and published it in [32]. Another well-suited data structure,
that for the implementation of Dijkstras algorithm according to Cormen [19]
is even more favorable, is a binary heap. When using a fibonacci heap, the
complexity is O(m + n ∗ log(n)) instead of O((m + n) ∗ log(n)) when using a
binary heap [76], with m being the number of edges |E| within the graph and
n corresponding to the number of vertices |V |.

Depending on the actual heap implementation used the runtime can vary a lot,
e.g. the Priority Queue implementation in the Java JDK is backed by a bal-
anced binary heap, but the elements in it are not directly updateable (meaning
they have to be removed and re-inserted to perform an update). Structures,
allowing direct updates of the elements tracked, perform much better. Re-
garding this type of structures an implementation of a binary heap and the
FibonacciHeap implementation by Keith Schwarz from the computer science
department at the University of Stanford [111] are available. A comparison of
these structures is given during Chapter 9 in Section 9.3.

Many additional improvements have been realized as well. Utilizing faster
data structures in general and re-writing database queries to better use indices
are just some of the tasks that have been done. A complete list of changes
regarding speed-improvements and the correction of different defects is huge.
However, all changes are part of a changelog file that is kept in the version
control system available at [61].

5.2. Batching Multiple Database Requests

One idea to further reduce the number of request to the data source is to
postbone queries as long as possible. Doing this multiple ranges can be joined,
resulting in a reduced need for communication between the algorithm and the
spatial database. An implementation of this approach was developed in 2017
at the University in Innsbruck. It has been named “Multimodal Incremental
Network Expansion loading Ranges in Batches” (MineRB).

Before any range is loaded from the database, the network expansion is con-
tinued as long as possible, without transferring any information from the data
source. Vertices that would trigger a query, i.e. the ones with a degree equal

61

Chapter 5. Extending and Improving Isochrone Algorithms

to zero, are stored in a separate set, the so called seed cache. Only after all
the available vertices from the priority queue have been expanded, the cached
seeds are used to load all the ranges within a single range query. This proce-
dure violates one of the requirements that the Dijkstra algorithm builds on,
namely the sorting of the visited vertices according to the duration from the
query point, that is guaranteed by the priority queue. Hence, parts of the ex-
pansion are performed multiple times and therefore more often when compared
to the MDijkstra, Mine(X) and MineR(X) algorithms. As a result, MineRB
is a trade-off between the number of database queries and the computation
time in memory. Another effect is, that vertex expiration is not applicable
anymore, since it also builds on the processing order of the vertices in the
priority queue.

Figure 5.1.: Postboned range
queries batch loaded in the

city of Innsbruck.

A sample output of this algorithm for the city
of Innsbruck can be seen in Figure 5.1. Al-
though eleven ranges need to be loaded from
the spatial database, only seven queries are
needed. Each range in the sample is high-
lighted with a numbered marker which reflects
the time of the query.

Especially if new ranges overlap old ones,
there is a need to process the same part of the
network multiple times, because new routes
to an already processed vertex become avail-
able. If that is the case and the new route re-
duces the overall duration to reach an already
processed vertex, potentially big parts of the
network have to be re-calculated, increasing
the overall computation time. However, for
some systems loading in postboned batches
can lead to a better performance, since typi-
cally the communication with the data source
is done via a network (to a dedicated database
server). Due to the missing vertex expiration
the system has to be able to keep the whole
computed reachable area in memory, but then
a fast processor might be able to diminish the
problem of calculating portions of the network

multiple times and benefit from the reduced data source accesses, resulting in a
faster overall performance. MineRB is listed in Algorithm 5, while differences
to MineR are highlighted in blue.

62

Algorithm 5: Algorithm MineRB(q, dmax, s, t, N)
input : q, dmax, s, t, N

output : Era, V ra

1 O ← ∅; C ← ∅; Q← ∅; R← ∅; T ← ∅; B ← ∅;

// project query point to start location (if necessary)

2 if q coincides with v then

3 O ← {(v, 0)}; // update the duration of v in O to 0
4 else

5 P = {(v, u) | e ∈ E : de = min
∀x∈E

dist(q, x) }; // find edge(s) with min distance

6 foreach e = (v, u) ∈ P do

7 O ← {(u, o/s)};
// add segments from q to edge (u, v) and to start vertex on edge

8 Era ← Era ∪ {((q, o), 0, λ(q, o)), ((u, v), max(0, ((o/s)− dmax)), o)};

// network expansion

9 while O 6= ∅ ∧ (v, dv)← dequeue(O) ∧ dv ≤ dmax do

10 O ← O \ {v};
11 C ← C ∪ {v};
12 if degree(v) = 0 then // v is seed

13 B ← B ∪ {v};

// load vertices by using a range query

14 if O = ∅ then // v is seed

15 T ← ∅;
16 foreach b ∈ B do

// create circle with center b and radius rb...

17 rb ← (dmax − db) ∗ s;
18 T ← T ∪makeCircle(b, rb);

19 foreach (v′, rv′) ∈ R do

// ...and subtract previous ranges to prevent loading v multiple

times

20 if dǫ(v, v′) < rv + rv′ then

21 T ← T \R ∩ ρ(v′, rv′);

22 foreach b ∈ B do

23 R← R ∪ {(b, rb)};

24 B ← ∅; // reset batch set B to empty set

25 Q← queryInRange(T); // issue range query using circular range T
26 foreach (u′, v′) ∈ Q do

27 if u′ /∈ {O ∪ C} then

28 O ← O ∪ {(u′,∞)};

29 if v′ /∈ {O ∪ C} then

30 O ← O ∪ {(v′,∞)};

// continue expansion like Mine would (starting from line 13)

31 foreach e = (u, v) ∈ E do

32 if u /∈ {O ∪ C} then

33 O ← O ∪ {(u,∞)};

34 dT emp← dv + τ(e, t + dv);
35 if u /∈ C then

36 O ← (O \ {(u, du)}) ∪ {(u, min(du, dT emp))};

37 if µ(θ(e)) ∈ {“csct”, “csdt”} then

38 if dT emp ≤ dmax then

39 Era ← Era ∪ {(e, 0, λ(e))};
40 else

41 Era ← Era ∪ {(e, o, λ(e))}, where d((e, o), q, t) = dmax;

42 V ra ← V ra ∪ {(v, dv)};

Chapter 5. Extending and Improving Isochrone Algorithms

Batching in the algorithm is achieved by saving all the nodes identified as
seeds in a special set B (line 13). This is referred to as “postboning” the
seeds. Only after all the other open-vertices from set O have been expanded
(meaning that the set O is empty after removing the vertex in line 10) the set
B is used for loading all the circular ranges at once. Therefore, in line 25 a
set of circles is loaded at once instead of single circles in MineR(X).

The disadvantages of the MineRB approach are the same as the ones for
MineR(X) with the added problem of not being able to expire vertices from
main memory. The performed queries are only doable by a spatial database
system and might even a bit more complex when compared to the (also com-
plex) queries used by MineR(X). The complexity of the algorithm is the same
as for MDijkstra, Mine(X) and MineR(X).

5.3. Range Shape Variation

A way to deal with the disadvantages of MineR(X) is to vary the shape of
the ranges loaded. Since multiple approaches within spatial data processing
use bounding boxes, a concept using rectangular or even quadratic areas, us-
ing them for loading information during network expansion seemed promising.
Spatial databases use these bounding boxes to index geometric and/or geo-
graphical data, so that containment of a vertex within a rectangular box is
much faster than checking for inclusion in a circle. Another optimization,
when using different shapes for range loading, can be performed by prevent-
ing overlapped regions. An approach to align rectangles on a map without
overlaps is the usage of so called tiles. An algorithm loading data from the
underlying data source with the help of tiles has been presented by Krismer et
al. at the 29th International Conference on Scientific and Statistical Database
Management (SSDBM) in Chicago, Illinois, USA in 2017. The following is
taken from this very publication presenting the algorithm called “Multimodal
Incremental Network Expansion using Tile regions (and vertex eXpiration)”
or MineT(X) [65].

Tiles are well-known in the context of geoinformatics and are utilized by the
widely used Web Map Tile Service (WMTS) Implementation Standard that
has been defined by the Open Geospatial Consortium (OGC) [74]. Since the
well-known term “tile” only refers to a “rectangular pictorial representation
of geographic data”, meaning the visualization of the data, but not the data
itself, it is necessary to distinguish between tiles and tile regions. Hence, the
term “tile region” is introduced, which also refers to the geographic data that
lies inside a tile.

64

5.3. Range Shape Variation

Definition 22: Tile region

A tile region is of quadratic shape and covers a part of the Multimodal
Spatial Network. The size of a tile region is determined by a zoom level
z.

To allow performance tuning, different tile region sizes can be implemented.
This concept is also used in interactive online maps, but with one major dif-
ference. In tiles used by interactive maps, information on zoom level l − 1 is
aggregated from level l. In contrast, tile regions always represent the same
data, only the size of the represented region changes. Zoom level z=0 refers
to the maximal extent of the network (for geographic data this equals the
whole world), while an increment to the level is equal to dividing each tile
region of the previous level into four new ones. This is equal to a quad-tree
partitioning of the network and means that zoom level z=12 already produces
412 = 16.777.216 different tile regions. The collection of all tile regions of a
specific z form a matrix that is defined as tile region matrix.

Definition 23: Tile region matrix

A tile region matrix is the set of all tile regions for a fixed scale defined
by zoom level z. The number of tile regions in a tile region matrix is
determined by the following formula: 4z

The collection of tile region matrices from level 0 (equaling a single tile re-
gion covering the whole world) to a certain zoom level z is also called a tile
pyramid. This scheme has been described in 2012 by Garcia et al. [35]. Their
visualization of a tile pyramid from level 0 to a specific zoom level (called l by
Garcia et al.) is listed in Figure 5.2.

When loading ranges with tile shape, the first step is to determine to which
tile region the vertex triggering the loading process belongs to. This is
done by utilizing the PostgreSQL database functions “lon2tile” and “lat2tile”
defined by the OpenStreetMap (OSM) community [94]. Secondly, the ex-
tent of the tile is determined by using the database functions “tile2lon” and
“tile2lat” (again from OSM). The results are passed to the PostGIS function
“ST_MakeEnvelope” in order to create an envelope used for vertex loading.
The next step is to determine all vertices contained with this envelope by using
PostGISs containment operator “ ” (depending on the database implementa-
tion, for some databases also the intersection operator “&&” is applicable and
can be used interchangeably to the containment operator). Finally, all the
information connected to at least one of the vertices identified in the previous

65

Chapter 5. Extending and Improving Isochrone Algorithms

Figure 5.2.: Tile pyramid from level 0 to l.

step are loaded. Algorithm 6 lists MineTX in pseudo code, while changes be-
tween MineX and MineTX are highlighted in blue. The algorithm introduces
the need for an additional parameter z defining the zoom level.

By using a tile region matrix with incremented z, the loaded chunks become
smaller and the amount of data loaded within one request decreases. There-
fore, a trade-off has to be made between the number of database requests and
the amount of vertices held in main memory. The advantage of this strat-
egy is that the algorithm can be easily tailored to the available hardware. If
the database connection comes with high latency and if there is enough main
memory, z can be chosen to be small (loading more data with one request). If
main memory is small, z can be increased in order to load smaller tile regions.
This approach also diminishes the problem that the amount of vertices held
by one tile region varies within a tile region matrix.

66

Algorithm 6: Algorithm MineTX(q, dmax, s, t, z, N)
input : q, dmax, s, t, z, N

output : Era, V ra

1 C ← ∅;
2 O ← ∅;
3 T ← ∅;

// project query point to start location (if necessary)

4 if q coincides with v then

5 O ← {(v, 0, cntv)}; // update the duration of v in O to 0
6 else

7 P = {(v, u) | e ∈ E : de = min
∀x∈E

dist(q, x) }; // find edge(s) with min distance

8 foreach e = (v, u) ∈ P do

9 O ← {(u, o/s, cntu)};
// add segments from q to edge (u, v) and to start vertex on edge

10 Era ← Era ∪ {((q, o), 0, λ(q, o)), ((u, v), max(0, ((o/s)− dmax)), o)};

// network expansion

11 while O 6= ∅ ∧ (v, dv, cntv)← dequeue(O) ∧ dv ≤ dmax do

12 O ← O \ {v};
13 C ← C ∪ {v};

// load vertices by using a tile range

14 if degree(v) = 0 then // v is seed

// v has not been loaded...

// ...load all edges within the tile region defined by v and z
15 T ← loadTileRegion({v}, {z});
16 foreach (u′, v′) ∈ T do

17 if u′ /∈ {O ∪ C} then

18 O ← ∪{(u′,∞, cntu′)};

19 if v′ /∈ {O ∪ C} then

20 O ← ∪{(v′,∞, cntv′)};

// continue expansion like MineX would (starting from line 12)

21 foreach e = (u, v) ∈ E do

22 dT emp← dv + τ(e, t + dv);
23 if u /∈ C then

24 O ← (O \ {(u, du)}) ∪ {(u, min(du, dT emp))};

25 cnt← cntu − 1;
26 if u ∈ C ∧ cnt = 0 then

27 C ← C \ {u};
28 else

29 O ← (O \ {u, du, cntu}) ∪ {u, du, cnt};

30 if µ(θ(e)) ∈ {“csct”, “csdt”} then

31 if dT emp ≤ dmax then

32 Era ← Era ∪ {(e, 0, λ(e))};
33 else

34 Era ← Era ∪ {(e, o, λ(e))}, where d((e, o), q, t) = dmax;

35 cnt← cntv − 1;
36 if v ∈ C ∧ cnt = 0 then

37 C ← C \ {v};
38 else

39 O ← (O \ {v, dv, cntv}) ∪ {v, dv, cnt};

40 V ra ← V ra ∪ {(v, dv)};

Chapter 5. Extending and Improving Isochrone Algorithms

Adaptive Zooming

After its publication at the SSDBM conference 2017 in Chicago, Illinois [65],
slight improvements have been made to the algorithm. The most important
one is that the algorithm can be configured to automatically adapt the zoom
level z by the remaining travel duration. That way less information known as
false positive are likely to be loaded and the parameter z does not need to be
passed to the algorithm anymore. In Figure 5.3(a) a non-adaptive computation
is shown, that always uses a zoom level of 15, showing the loaded tiles in a
bluish color framed by a blue border. The used query point is located in the
city center of Washington, D.C., while a travel duration of fifteen minutes is
used. Figure 5.3(b) shows the exact same query, but with the usage of adaptive
zoom levels. In the latter image the zoom level is 12 if the remaining travel
duration is larger than 2800 seconds, changes z to 13 for a duration between
2001 and 2800, then increases z to 14 until duration is below 1800, using 15 as
a zoom level between 1301 and 1800 seconds. For a duration between 801 and
1300 seconds a zoom level of 16 is used. Finally the adaptive case uses small
tiles with a zoom level of 17 for queries if the remaining duration is below 800
seconds.

(a) Non-adaptive loading of tile ranges (b) Adaptive loading of tile ranges

Figure 5.3.: MineT(X) non-adaptive tile range size compared to usage of adap-
tive zoom levels in the city of Washington, D.C.

As can be seen, the size of the loaded tiles decreases as soon as the reachable
area is further away from the query point, which is located at the Zero Mile-
stone south of the White House (or in terms of the Figure 5.3 at the lower left
quarter of the image). Although the adaptive approach increases the number
of calls to the data source a bit, the data transferred is reduced and especially
the number of vertices loaded as false positives.

68

5.3. Range Shape Variation

The ranges used for the adaptive levels have to be determined somehow. There
are multiple ways to do this. One is similar to the approach that is used during
precomputation when using circular ranges in the MineR(X) algorithm. The
number density of a vertex can be used in order to estimate the zoom level z
when a certain remaining duration triggers the loading of the next tile range.
The drawback of this approach is, that it needs an additional data structure
or database table that records this information for every vertex for multiple
time durations, but is able to deliver accurate tile sizes, such that for every
tile loaded the amount of data transferred stays almost constant. Another
approach, that has been used to determine the tile ranges used in the sample
above, is to use the tested overall computation runtime as factor to optimize.
Several computations were performed with random query points all over the
dataset with varying travel duration and changing zoom level z. During these
tests the computation runtime was recorded, so that for every random query
point the result is a graph that records the time needed to calculate the area
reachable within x minutes when using different zoom levels. In the end all the
runtimes are merged together by simply adding the times recorded at a certain
z with a fixed dmax. The result of this test is a figure plotting one function per
tested zoom level z. With these information it is straight-forward to determine
the best adaptive ranges. Starting with the smallest dmax recorded the zoom
level delivering the best performance is noted. On every line intersection the
new best z is noted together with the dmax of the (the value on the x-axis)
intersection point. If this is done for all the values then the result looks like
”800 : 16, 1300 : 15, 1800 : 14, 2300 : 13, 2800 : 12“ which represents the best
adaptive zoom level ranges for the dataset under test. This procedure is also
carried out during the evaluation in Section 9.5. A minor improvement to this
technique has been applied as well. It makes sense to never increase the zoom
level, since this would mean that for larger travel times smaller tile ranges are
loaded. Such a behavior can only be caused by the randomness of the query
points, but since longer travel times will always result in a bigger reachable
area when starting at the same query point, the tile sizes loaded should at least
stay the same or become smaller with decreasing remaining travel duration.
If multiple different zoom levels deliver the same performance, a decision has
been made to either load the biggest tile size (equal to the smallest zoom
level), resulting in less data source accesses, or to load the biggest zoom level
(equal to the smallest tile size). In the sample above the bigger zoom level has
been preferred, to reduce the number of vertices loaded as false positives.

The complexity of the MineT(X) algorithm is the same as for MineR(X), and
also as for MineRB, Mine(X) and MDijkstra. However, MineT(X) addresses
some of the disadvantages of MineR(X). Since the tile regions are in fixed
positions, the assignment of vertices to specific tiles (depending on a certain
zoom level) can easily be precomputed. As a result, the requirement for the

69

Chapter 5. Extending and Improving Isochrone Algorithms

need of a spatial database does not hold true. In theory, it is possible with the
help of an additional database table (e.g. containing the columns “zoomLevel”,
“vertex” and “tileNumber”) to replace the containment operator “~” with a
simple join. However, a spatial database reduces storage needed and therefore
MineT(X) combines the best of both worlds. A spatial database is not a hard
requirement for the algorithm to work anymore, but it can benefit from its
features in order to reduce the number of tables (and bytes) stored. The
queries sent to the database are much simpler when compared to the ones
of MineR(X). No circle has to be created and the containment within a tile
region representing a rectangular shape, can directly be computed using index
operations. No additional calculations have to be performed that check for
inclusion in a circular region. However, there remains a disadvantage that are
not solved by using tiles, namely the problem of false positively loaded vertices
that are never expired from memory. This issue is relieved by the introduction
of adaptive zoom level loading, but more advanced techniques are needed to
further reduce the memory consumption and computation time when using
MineR(X) and MineT(X).

5.4. Incremental Calculation of Isochrones

A well-known technique to speed up computations, that has not been applied
to the field of isochrone calculation yet, is memoization. The term was coined
by D. Michie in 1968 [78]. The idea behind memoization is to store the results
of expensive calculations in a cache and re-use those cached results instead of
re-computing them each time. This works for all deterministic functions whose
results do not change throughout various calls. Therefore, this technique can
also be applied to the computation of isochrones if enough information is
stored in the cache. When computing isodistances, the query point together
with a limiting distance is enough information for memoization. For unimodal
isochrones additional information regarding date and time, maximal duration,
as well as traveling speed has to be cached. Isochrones in Multimodal Spatial
Networks need even more information, for example the traveling direction.

Memoization is often applied to reduce the computation time not only of al-
ready computed results, but also for iterative or recursive algorithms. One
well-known example where this approach reduces computation time by far is
for computing fibonacci numbers. Storing the last two results in a cache allows
to compute the next fibonacci value with a single operation (by adding the
two values from cache), instead of computing the whole fibonacci series. Based
on this observation, the idea came into mind, if something similar could be
done for isochrones as well. A reachable area created with a travel duration of

70

5.4. Incremental Calculation of Isochrones

ten minutes will always include the area that is reachable within five minutes.
However, one major drawback of the algorithms discussed in Chapter 4 is that
they always compute the results from scratch without the knowledge of former
computations. Since it is not trivial to implement an incremental calculation
that is based on known results, various different cases that need to be taken
care of, have been identified and were investigated in detail. A paper describ-
ing incremental calculation of isochrones regarding travel duration has been
published by Krismer et al. at the “Grundlagen von Datenbanken” workshop
(GvDB) in Bolzano, Italy in 2014 [67]. The following paragraphs are taken
from this very publication and have been adapted to include research that
took place since the publication.

5.4.1. Challenges for Incremental Calculation

There are some challenges that need to be addressed when implementing an
incremental calculation. While for networks containing only continuous time
edges, it is possible to expand or shrink the reachable area solely from its
border, this is not true for discrete time edges. For those, new connections
can become available, even if they are not located at (or near) the border, since
more schedules have to be considered. To take care of this problem, all vertices
connected via discrete time edges are added to a list l_hubs. These vertices
are the ones we referred to as network hubs. Besides the hub h itself, further
information is stored in this list: the time t of arrival (or departure depending
on the computation direction) at the vertex and the remaining duration d that
can be used. With this information it is possible to continue computation from
any hub with a modified traveling time for the algorithms. When it comes to
vertex expiration, it is important to understand that the cached result does not
equal the disjoint groups introduced to implement vertex expiration, namely
O, C or X. To be precise, the cached information equals the output of the
algorithms, which is stored in variables V ra and Era.

The list l_hubs needs to be stored in addition to the isochrone’s maximal
traveling duration and the isochrone result itself, so that it can be used for
incremental calculation. None of this information needs to be held in mem-
ory during computation of the base isochrone itself and is only touched on
incremental calculation. Therefore, runtime and memory consumption of the
isochrone algorithms will not be influenced much.

Other problems include modifications to the spatial network in combination
with incremental isochrones. If there is some change applied to the underlying
network, all the base isochrones can not be used for incremental calculation
any more. It can not be guaranteed that the network modification does not

71

Chapter 5. Extending and Improving Isochrone Algorithms

influence the base isochrone. Changes in the schedules of modalities (for ex-
ample the public transportation systems) could cause problems as well, as they
would also influence the base isochrone. As a result, incremental calculation
only work in static networks. If a network changes all the cached results will
have to be removed or at least checked for validation.

5.4.2. Types of Calculation

There are three different cases that have to be kept in mind when calculating
an isochrone with traveling time dmax using a base isochrone with duration
dmax_base.

Case dmax = dmax_base

The first and most simple case, is the one where dmax is equal to dmax_base.
In these cases it is obvious that the calculation result can be returned directly
without any further modification.

Case dmax < dmax_base

The second case is the one where dmax is less than dmax_base. In this
situation all vertices can be iterated and checked for suitability. If the duration
is less or equal to dmax, then the vertex also belongs to the new result,
otherwise it does not. As an alternative, the reachable area can also be created
by shrinking starting at the border. The network hubs do not need any special
treatment, since no new areas can become part of the result if the available
time decreased. The only necessary task is the recalculation of the duration
from the query point to the vertex in the isochrone. The duration d from the
query point q to a network vertex v is then equal to (assuming that the border
point with the minimal duration to v is named bp):

d(q, v) = d(q, bp) − d(bp, v)

Case dmax > dmax_base

The remaining case, where dmax is bigger than dmax_base, is more complex.
It differs in the fact that new, possibly disconnected areas can become part of
the result and therefore it is not sufficient to look at all the border points of
the cached reachable area. The new areas are caused by discrete connections
from network hubs. A real-world example is a train station where a train is
leaving at time t_train due to its schedule and arriving at a remote station

72

5.4. Incremental Calculation of Isochrones

at or before time dmax (any time later than dmax_base is feasible). The
time t_train has to be later than the arrival time at the station (and after
the isochrones starting time).

Since only network hubs can create new disconnected reachable areas, it is
sufficient to grow the isochrone from its border and all the network hubs.
Because all these hubs have been store in list l_hubs, only this very list and
the points at the border have to be considered.

Table 5.1 summarizes the recently mentioned calculation types shortly.

Case Instructions
dmax < dmax_base iterating vertices from base isochrone

+ check if travel time is <= dmax
or shrink base isochrone from border

dmax = dmax_base return base isochrone
dmax > dmax_base extend base isochrone from

border points and with list l_hubs

Table 5.1.: Incremental calculation instructions

73

CHAPTER 6

Enhancements on Isochrone
Application

Improvements to the algorithms that are able to compute isochrones in Multi-
modal Spatial Networks have not only been applied in terms of performance,
but also to extend isochrone application capabilities. In this chapter four
enhancements are proposed:

• Averaged isochrones: A single isochrone represents the reachability of
or from a certain place at a given time. Averaged isochrones focus on
answering the question on how good a place is reachable over a certain
time span.

• Time-invariant isochrones: Time-invariant isochrones deal with the
reachability within the time span regarded by averaged isochrones. If
a place is reachable by bus quite well, e.g. 10 times within one hour,
but all the buses arrive or leave within the first ten minutes of the hour,
time-invariant isochrones are able to unveil that the reachability is not
well distributed.

Chapter 6. Enhancements on Isochrone Application

• Elevation aware computation: Computations with road networks are
carried out without the knowledge of elevation. Throughout the past
years most routing engines and applications have considered this issue,
so that for travelers like cyclists routes are suggested that prevent steep
hills and prefer declines. Google introduced this concept in its product
“Maps” and its routing engine in 2014. The same concept is ported
to isochrones, since data delivering information about elevation is now
freely available for most regions of the world.

• User tailored isochrones: The reachability by bike is not only depend-
ing on the elevation profile of a route, but also on the training level of
the cyclist itself. Therefore, the concept of user tailored isochrones is
introduced. With the knowledge about the fitness of a cyclist, that for
example can be gathered from previously recorded data, it is possible to
tailor the computation to individuals. As a result a (semi-)professional
cyclist will be able to reach a bigger area in the same time when com-
pared to a untrained person. User tailored isochrones do not only change
the speed of a cyclist, but also take personal preference into account. A
fearless teenager might prefer to take a fast and even risky downhill
track, while an untrained cyclist might take a detour in order to have a
more flat route.

All these enhancements are implemented and can be used in real-world
datasets. This is possible by using an application which has been developed
throughout this PhD thesis and that is described in detail in Chapter 8 or
directly by exploring the sources [61].

6.1. Averaged Isochrones

While for individuals traveling through a city the most important aspect is
what can be reached when starting at a certain time, the same might not be
true when planning in the long-term. If a new shop is to be opened or a house
is to be built, it is of most interest how easy the building can be reached in
general and not only when starting from a certain point in time. Consider a
pharmacy for example. It is great if it can be reached by bus at eight o’clock
a.m. and six o’clock p.m., but if in between it is only reachable by using a
car, its location might not be optimal. The same holds true for real-estate,
although the interval of the time points where it is easily reachable might
differ. The availability of fast access to a train in the morning is great when
traveling to work, but if there is no train for the children to return from school

76

6.1. Averaged Isochrones

or in the evening when returning from work, the benefit of the early morning
train is diminished.

To take these considerations into account “Averaged isochrones” have been
introduced. Such isochrones focuses on the reachability over a given time
range. Depending on the use case the range may heavily vary. When opening
a shop the reachability during the opening hours is most likely of interest,
while for city planning the overall daytime could be important.

Averaged isochrones are easy to compute in networks without discrete edges.
In this case the reachability over time stays constant. When traveling by
bike and if a place is easily reachable during daytime, it will also be during
night time. The same holds true for walking individuals or when traveling
by car and there are no traffic jams. Traffic jams on the other hand would
have to be implemented by continuous space and discrete time edges (or a
similar approach), since due to its definition a continuous space and time edge
is always passable. As a result, in a network with only continuous time edges
an averaged isochrone equals any isochrone computed from the query point of
interest.

However, if discrete time edges are part of the network, this assumption does
not hold true. An approach to implement an averaged isochrone could be
the adaption of the schedules utilized by discrete network edges. If schedules
are not recording certain arrival or departure times, but by the frequency of
availability within a time span (resulting in frequency based schedule), com-
putations built upon such schedules will always result in averaged isochrones.
The problem with this approach is, that the time span needs to be fixed. If
the span determining the averaged isochrone is one hour, a frequency based
schedule would have to be created using the exact same time span. For dif-
ferent spans, e.g. to twelve hours, the information recorded by the frequency
based schedules would have to be re-created from the original schedule. An-
other disadvantage is that schedules would have to be kept multiple times.
One schedule would be needed that uses arrival and departure times, another
one with a time span of one hour and maybe even more depending on how
many time spans are of interest. If only one frequency based schedule is used,
while the original one is dropped from the data source, then it is only possible
to compute averaged isochrones, but not those using a certain time and date
instead of a time span. As a result, a different procedure was implemented to
create averaged isochrones.

The approach does not focus on changing parts of the network or the schedules,
but uses multiple equally distributed isochrones that are computed within the
time span of interest. Staying with the example of a pharmacy, the time span

77

Chapter 6. Enhancements on Isochrone Application

of interest was 8:00 a.m. to 6:00 p.m. (or 08:00 until 18:00). An averaged
isochrone can also be created from twenty-two isochrones that are computed
with an starting time varying by half an hour starting with 08:00 for the
first and 18:00 for the last isochrone. This way, the accuracy of the resulting
isochrone can be easily varied by changing the number of single isochrones
used during computation. For simplicity Figure 6.1 shows a possible starting
position for an averaged computation using only four single isochrones within
a time span of one hour (so one isochrone starts at e.g 08:00, the next at 08:20,
the third at 08:40 and the last at 09:00 o’clock). The query point here is the
green point in the reachable areas. It location represents the entrance of the
eastern graveyard in the city of Innsbruck, Tyrol, Austria.

Figure 6.1.: Possible starting positions in Innsbruck for an averaged isochrone
computation using four single isochrones.

These four isochrones are then processed in order to assign a frequency to every
place reachable. This is done by utilizing the resulting geometries instead
of the edges and vertices of the reachable area. Starting with the first two
isochrones, the intersection between them is identified. The intersections are

78

6.1. Averaged Isochrones

then joined together into one (multi)polygon structure that is stored in a list
at position two. The non-intersecting parts are also unioned, but are stored
at position one. The positions in the created list structure represent in how
many constructing isochrones the parts of the (multi)polygon were included.
For the first step, two means that they are always reachable (100 percent for
the two isochrones) and position one equals a reachability of 50 percent. Now
the third isochrone is considered. It is intersected with the multipolygon at list
index two, resulting in intersecting sections that are again joined to become a
multipolygon that is stored at list position 3 (parts in that multipolygon were
included in all creating isochrones). The non-intersecting parts are tested
against the multipolygon from position one. Intersecting parts are promoted
and form a multipolygon stored at list position two, while all the other sections
become the new entry at list position one. Algorithm 7 lists the procedure in
pseudo code, using an input array I[] and a single polygon as output (A).

Algorithm 7: Algorithm AveragedIsochrone(I[])
input : I[]
output : A

// Initialize list L, skip entry 0 (leave it empty)

// (do not store polygon of area reachable by 0 percent)

1 L← [empty, I[0]];
2 I ← I \ I[0];

3 foreach i ∈ I do

4 for j ← size(L); j > 0; j ← j − 1 do

5 temp← intersection(i, L[j]);
6 i← i− temp;
7 if j + 1 < size(L) then

8 L[j + 1]← union(L[j + 1], temp);

9 else

10 L[size(L)]← temp; // Append temp to list L

11 L[1]← union(i, i);

// Return polygon from list with frequency just above fifty percent

12 A← L[ceil(sizeof(L)/2)];

After all the constructing isochrones have been iterated, a structure is com-
puted that gives information about the reachability of places in a percent-
age value. Entries at the first position are reachable by a percentage of
100/numberOfCreatingIsochrones, while the places at the very end are al-
ways reachable (by 100%). The averaged isochrone then can be easily ex-
tracted by finding the correct position in the result list. For the definition of
the averaged isochrone to be reachable by at least 50 percent, the position is
the one right in the middle (length of the list divided by two; whereas real
numbers are need to be ceiled). The result of the four sample isochrones from
above looks like Figure 6.2(a).

79

Chapter 6. Enhancements on Isochrone Application

The visualization of the result can be done with the help of transparent over-
lays. This adds some visual information as it not only shows the averaged
isochrone, i.e the areas reachable by at least 50 percent of the time, but also
assigns an optical reachability value for all the other places. In Figure 6.2(b)
the transparency of the region coincides with the reachability. The trans-
parency is computed by 1 − percentageReachable. If the area is reachable
within only one of the four isochrones used during computation, the trans-
parency value is set to 25 percent, while places always reachable are shown as
opaque (a transparency value of zero). During visualization this effect can be
achieved by simply overlaying the transparent isochrones.

(a) Averaged isochrone (b) Visualization using transparency

Figure 6.2.: Averaged isochrone computation result.

The complexity of the algorithm itself is O(n2), whereas the runtime heavily
depends on the time needed for polygon intersection and union. Those two
operations can be performed with a complexity of O(n ∗ log(n)) as shown by
Lin et al. in [69].

6.2. Time-invariant Isochrones

The averaged isochrone considers a time span, but fails to take the distribution
of the reachability into account. If schedules are not based on a fixed frequency
that does not change for time segments within the same day, this can become
a problem. In real-world scenarios this can occur due to rush hours. In the
morning a city is most probably easily reachable, since school buses and a lot
of trains are on duty, but the situation in the afternoon might be completely
different. Therefore, the individual points in time a place can be reached, need
to be analyzed. The result is called a time-invariant isochrone. An algorithm
capable of doing this is based on the averaged isochrone computation, but is
extended by additional steps. It is listed in Algorithm 8.

80

6.2. Time-invariant Isochrones

Algorithm 8: Algorithm TimeInvariantIsochrone(I[])
input : I[], T []
output : T I[]

// Initialize list L
1 I ← ∅;
2 for i← 0; i < size(I[]); i← i + 1 do

3 I[i]← {(iso : I[i], timeMarks : {T [i]})};

4 L← [I[0]];

5 foreach i ∈ I do

6 for j ← size(L); j > 0; j ← j − 1 do

7 temp← (
8 iso : intersection(i.iso, L[j].iso),
9 timeMarks : L[j].timeMarks ∪ i.timeMarks

10);
11 L[j].iso← L[j].iso− temp.iso;
12 L[size(L)]← temp;

13 temp← (
14 iso : difference(i.iso, L[j].iso),
15 timeMarks : L[j].timeMarks
16);
17 L[j].iso← L[j].iso− temp.iso;
18 L[size(L)]← temp;

19 temp← (
20 iso : i.iso,
21 timeMarks : i.timeMarks
22);
23 for k ← 0; k < size(L); k ← k + 1 do

24 temp.iso← temp.iso− difference(temp.iso, L[k].iso);

25 if notempty(temp.iso) then

26 L[size(L)]← temp;

27 L.splice(j, 1); // Remove old element from result list L

28 tDelta← T [1]− T [0];
29 foreach l ∈ L do

30 D ← [0]; // Create delta time array to compute skewness from timeMarks in

l
31 foreach t ∈ l.timeMarks do

32 D[size(D)]← (t− T [0]) + tDelta;

33 D[size(D)]← T [size(T)− 1] + tDelta;

34 s← 3 ∗ (D − D̃)/σD; // Calculate skewness for area l
35 T I[size(T I)]← (iso : l.iso, skewnewss : s);

81

Chapter 6. Enhancements on Isochrone Application

In difference to the averaged isochrone computation the algorithm uses geo-
metric intersection and difference instead of intersection and union. This is
necessary, since not only a percentage value of reachability is assigned to in-
dividual regions, but concrete time marks. Only by applying these marks it is
possible to compute a skewness of the points in time a location is reachable.
The determination of the areas to which time marks need to be assigned adds
to the algorithms complexity, so that it is O(n3).

After the algorithm finished its computation, an output array is available that
contains multiple areas (defined by property “iso”) with a skewness value as-
signed. The formula that is used to calculate the skewness of the time deltas in
D has been defined by K. Pearson and therefore is known as Pearson’s second
coefficient (or median skewness) [24]. It is given in the following equation:

skewness = 3 ∗
(mean(D) − median(D))

standard_deviation(D)
= 3 ∗

(D − D̃)

σD

There is one improvement over using the plain median skewness on the time
marks. The time marks are extended with one additional mark at the begin-
ning and one at the end, while shifting all the marks by the minimum time
difference. There are two reasons for that. First, the skewness can also be
computed when only one time mark is available. This would not be doable
without this extension, since the skewness of a single value is not defined.
The standard derivation of a single value is zero and since this deviation is
needed as a divisor the difference of the mean and median of a distribution
by its standard deviation a division by zero would occur. This would result
in an infinite value. To overcome this issue, the skewness has been defined
as undefined for a single value. Second, this extension enables to determine
statistics on a more global level. In the case when an area is reachable for
example the first two times, but not anytime later, the skewness would still
be zero, since median and mean would be the same. With the help of the
added values at the beginning and at the end the mean can only be the same
as the median, if the time mark is exactly in the middle of all the occurring
time points. The result is what would be considered as an equally distributed
reachability over the whole considered time span, not only within the time
marks of the currently iterated subpart of a single isochrone.

If these areas are visualized with the help of transparency, e.g. using the
skewness as percentage of transparency with a minimal transparency of 25
percent, the output looks like Figure 6.3(a). For creation, the same isochrones
were used as for the sample in Section 6.1 that are listed in Figure 6.1.

82

6.2. Time-invariant Isochrones

(a) Visualization (b) Zoomed detail

Figure 6.3.: Time-invariant isochrone.

The transparency in the result does not refer to a reachability, but to its distri-
bution. Therefore, some effects can not be interpreted without the knowledge
about the reachability of the place itself. As an example the area in Fig-
ure 6.3(a) at the bottom left can be seen, which is a so called reachability
island caused by a bus connection. The opaque blue island surrounds three
more transparent regions. This part of the time-invariant isochrone has been
zoomed in Figure 6.3(b). The three transparent parts represent bus stations
that are reachable three times out of the four creating areas (in isochrone #1,
#3 and #4 for the two left bus stations and #1, #2 and #4 for the right
bus station). The surrounding is reachable only twice, but with a better dis-
tribution (in isochrone #1 and #4 only). The skewness of the surrounding
therefore is zero, while this is not true for the bus stations, where it is negative
for the two left stations and positive for the right station.

However, in combination with the averaged isochrone the time-invariant
isochrone adds valuable information to the computation result. With it state-
ments can be made if a place is reachable during certain times only, e.g. dur-
ing rush hours, or equally distributed throughout the whole time span. Since
transparency can be used to visualize both results, it is possible to overlay
them using multiple layers. Depending on the actual colors and the blending
mode that is used to overlay the partially transparent layers, visualizations
can be created that highlight places that are part of both, the averaged and
time-invariant isochrone. These findings have been published at the AGIT
poster session in 2015 by Krismer et al. [63].

83

Chapter 6. Enhancements on Isochrone Application

6.3. Elevation Aware Isochrones

One thing that is missing for isochrones, that becomes obvious in the region
of Tyrol, is elevation awareness. During computation no information about
the elevation of a vertex, the steepness of a way or the gradient of the terrain,
is used. To overcome this limitation, two things were performed. First, the
information about the elevation was added in the datasets isochrones are com-
puted in. Second, the information needs to be used by the algorithms. The
latter is described in this section, while the first point is discussed on dataset
creation, which is explained in Chapter 7 and Section 7.4.1. For the remain-
der of this section it is assumed that each vertex in the underlying network
contains information about its location (e.g. by latitude and longitude) and
about its elevation (given in meters above sea level). Furthermore, more ver-
tices have been added to the networks graph, so that no inclines and declines
are missed on long, straight roads.

A first examination when thinking about elevation is that it does not matter for
the public transportation system. Here, the schedules applied to the discrete
space and discrete time edges implicitly include the elevation. If a subway
train takes five minutes from the main station in downtown to another station
in uptown, elevation is not of interest. The reason is that the information
used by the isochrones algorithms is always time. In schedules this is already
included in the duration or the arrival/departure times, so elevation will not
be of any use for schedules. This is completely different for continuous space
edges. Here the information about the duration that is needed for traversal is
given as length of the edge and not directly as time. In such cases the duration
that is needed is computed from the length and a traveling speed on the edge.
The speed that is reachable on a particular edge, however, is influenced by its
slope. Therefore, regarding elevation will make a difference in the result for
networks including such edges.

When thinking about roads in real-world networks, the achievable speeds are
not only influenced by a slope, but also by the surface of a road. Even more
important for elevation awareness is, that the change in speed depends on the
surface and type of the road. If a cyclist drives down a steep decline the speed
might increase fast if the street is paved or made out of asphalt. If in contrast
the way is unpaved and made out of gravel, the increase in speed might be
less dramatic. The same holds true for inclines and other means of transport.
The type of the road itself also effects the obtainable speeds. On a cycle path,
riding a bicycle requires less attention to the surrounding traffic as it does on
a busy federal highway, so in addition to the roads surface also the type of it
is of interest.

84

6.3. Elevation Aware Isochrones

The transport mode and the surface on an edge are not the only things that
influence the speed when regarding elevation. Another thing is the transporta-
tion modality itself. When driving in an overpowered sports car, an incline
of twelve percent might not make any difference at all. The same steepness
will be a problem for most cyclists and especially for non-athletic people car-
rying a heavy load up a mountain. The mode of movement might differ in
the behavior for inclines and declines. Though cyclists will be faster riding
downwards and slower going upwards, the effect of walking downwards will
be less dramatic. For walking and cycling going upwards for long distances
will slow down the average speed quite a bit, while in contrast walking down
declines will not speed up walking as fast as it does for cycling. Hence, the
effect is non-linear. A decline of thirty percent will increase traveling speed
on a bicycle quite fast it will not increase the speed three times faster on a
ninety percent decline.

All these observations indicate that different treatments for elevation informa-
tion is needed for different modalities. Therefore, the following methods have
been implemented (sorted by computational intensity):

• Schedule-based: as explained before, this is trivial, because schedules
already implicitly include elevation data.

• Fixed-mode: uses a fixed speed that is applied for all edges in a network.
This mode is for example used when computing isodistances.

• Simple mode: usable for modalities that are not influenced by elevation,
such as cars. It models the behavior when not regarding elevation and
can be used to compare results in three dimensional datasets (with eleva-
tion information available) with results from two dimensional ones (with-
out elevation information). When using this model the resulting speed
that an edge can be traversed with is solely defined by the maximum
speed allowed and the maximum speed the vehicle (a car, a motorcycle
or a moped...) is capable of.

• Cycling mode: a specialized mode for bicycles that uses specific average
speeds per way type (e.g. 18km/h on a cycleway and 12km/h on an
unpaved path). If further information about the surface of the way
is available, it is used to adapt the speed by multiplying a so called
“surface speed factor” (no change on an asphalt or unknown surface,
reduced speed on muddy street by multiplying with a speed factor of 0.6).
However, this mode does not take elevation information into account.

85

Chapter 6. Enhancements on Isochrone Application

• Walking mode: a specialized mode for walking. Essentially implements
the same methodology as the cycling mode does, but with speeds (and
surface speed factors) suitable for walking.

• Elevation aware cycling mode: Extends the cycling mode with elevation
awareness that uses a specific weighting function tailored to cyclists.

• Elevation aware walking mode: Adapts the walking mode and adds ele-
vation awareness. Therefore, it can be used for hiking and walking. To
calculate speed the rules from DIN 33466 are adapted. This standard
has been introduced to estimate walking times and is used on hiking
trail signposts in the middle of Europe.

The latter two modes are aware of elevation. To compute correct speed values
in these modes several approaches have been researched. At first, a very
simple method has been implemented that takes the start and end vertex of
a networks edge and calculates the slope by simply applying the arctangent
function. Since two edge lengths are known (the distance of the vertices and
their delta in elevation), this gives the angle. For the elevation aware walking
mode DIN 33466 is applied with a slight modification, if the angle is above
a lower bound of two degrees. If the angle is below this threshold, elevation
data will not be taken into account, since it can be assumed that walking (or
cycling) on such slopes is not different than on completely flat ways. The
formula used by this DIN is given in Algorithm 9:

Algorithm 9: Algorithm DIN 33466(v1, v2)
input : v1, v2
output : secT otal

1 timeF lat← distanceInMeters(v1, v2)/4000;
2 deltaElevation← max(v1.height, v2.height)−min(v1.height, v2.height);
3 timeElevation← 0;
4 if deltaElevation > 0 then

5 timeElevation = deltaElevation/300;

6 else

7 timeElevation = deltaElevation/500;

8 timeT otal← min(timeElevation, timeF lat)/2 + max(timeElevation, timeF lat);

9 secT otal← timeT otal ∗ 3600;

As can be seen from these equations, DIN 33466 uses a time calculation based
on two steps. The first step is to compute the time between the points as if
there was no elevation (which is saved as time in hours in variable timeF lat).
The rule uses a walking speed of 4000 meters per hour for this computation.
The second step includes the delta in elevation and uses a speed of 300 meters

86

6.3. Elevation Aware Isochrones

per hour for inclines or 500 meters per hour for declines. The result is then
computed by adding the smaller value divided by two to the bigger value.
This gives the time in hours, so that multiplying by 3600 is needed to get a
value of seconds. For isochrone computation a small adaption is applied to
the algorithm. Instead of 4000 meters per hour a base speed that has been
calculated by the walking mode is used. Therefore, the elevation aware walking
mode is a DIN 33466 enabled walking mode (as the name already suggests).

For the cycling mode no matching DIN or ISO norm could be found. Addi-
tional research has been carried out [70]. The results have been published at
the GvDB workshop 2016 by Krismer et al. in Nörten-Hardenberg [66, 114].
Besides comparing and optimizing different digital elevation models, that will
shortly be discussed in Chapter 7, a mathematical function suitable for time
estimation for cyclists was found. For declines the resulting formula is

speeddecline =
√

1 + 30 ∗ slopedecline ∗ speedbase

The equation for inclines is

speedincline = (1 − 5 ∗ slopeincline)2 ∗ speedbase

Together the two functions form a S-like curve, that increases the speed very
quickly once a cyclist rides downhill and decreases the speed quickly once
he rides uphill [70]. The base speed in those functions is determined by the
cycling mode. As a result the elevation aware cycling mode is an extension of
the cycling mode (as the name already suggests).

One of the problems that occurs with elevation data, is that taking the start
and end vertex of an edge into account is not very accurate. The reason for
this is, that the accuracy depends on the length of the edge. This approach is
feasible for short way segments, but is problematic for longer ones that are used
for example when modeling highways. In such cases there is the possibility
that inclines and declines are lost. This can be seen on mountain streets for
example. If there is a long straight way that is modeled solely by two vertices
(start and end), it could happen that both vertices have a elevation of the
same height, although in between of the two vertices there is a hill.

To overcome this disadvantage, two approaches seem feasible. The first one is
to extend edges with intermediate vertices. If the resolution of the elevation
model is large enough so that all elevations of interest are part of it, the number
of locations necessary to regard all available information is determined by the

87

Chapter 6. Enhancements on Isochrone Application

Nyquist frequency [112]. It has been defined for signal processing but is also
applicable for this very case. If an elevation model has a resolution of 30
by 30 meters, then the frequency of the intermediate points needs to be at
a maximum of 15 meters in order to reconstruct without losing information.
This can be realized by segmenting roads and adding intermediate points
before merging the elevation data. The drawback of this approach is that many
intermediate points need to be regarded during elevation computation and that
it adds a lot of points to the resulting network graph. This increases memory
consumption and computation time of the algorithms that work on such a
graph. Therefore, a second approach has been implemented that combines the
best of both worlds. It regards elevation data beyond start and end vertex and
does not include addition of intermediate points. In a separate preprocessing
step information about the elevation profile of an edge itself can be computed.
Only during this preprocessing step intermediate points are temporarily added
to the edge. With them an average incline, average decline and the distance an
edge inclines can be computed. The information can then be stored alongside
the edge without the need to keep the intermediate points in the graph. With
the help of the two average values elevation between the start and end vertex
is not lost while keeping the computation itself fast.

6.4. User Tailored Isochrones

Another advantage of using a way type and a speed to compute the time that is
needed to traverse an edge, is that it allows to tailor results to individual users.
The following approach has been researched together with M. Malfertheiner
[70].

Movement in general is a very individual task. Riding a bicycle can be seen
as an example here. Driving steep and long slopes can be really tough for a
non-experienced person. It is impossible to have a single setting that fits for
all types of users. In general, an application should already suggest different
paths for a mountain bike and a racing bike, but in the best case it tailors
routes to individuals. A hobby cyclist might take two hours for a track, a
professional racer takes 40 minutes and a person new to cycling takes three
and a half hours. Therefore, it is necessary to find a mechanism, that is
powerful enough to create a detailed profile of a user.

Such a mechanism can be found by assigning a collection of average speeds
for various way types to every person. To regard elevation, the average speeds
are splitted by slope. A way type is not assigned to a single speed value, but
to 61 speed values (for slopes between -30 to +30 degrees). The resulting

88

6.4. User Tailored Isochrones

matrix is quite big. The datasets described in Chapter 7 are best usable with
16 different way types, so the resulting matrix is of size 16x61. Every row
of the matrix corresponds to a way type and every column to a slope value
ranging from -30% to +30%. A cell is either null (no data inserted so far) or
contains distance and speed. The schema of a profile is listed in Table 6.1,
whereas in each cell the information about distance (d) and average speed (s)
is stored. There can be a lot of empty cells in this table, so missing data must
be handled somehow. For further classification such a user profile is referred
to as “raw profile”, while optimized profiles are called “user profiles”.

Slope

-30 % ... 0 ... + 30 %

W
a
y

ty
p

e

0
..

.
15

[d,s] or null . . .
. . .

Table 6.1.: Raw profile matrix

The definition of the way types is done with the help of metadata that is
assigned to each edge within the road network. The rules that are for this
classification have been defined within [70] and are appended to this thesis.
They are given in Table A.1.

It is obvious that a user can not manually enter his or her profile. This
task would be much too complicated and error-prone. Therefore, a method
is introduced to automatically generate user profiles from previously recorded
tracks. Tracks can be recorded by any tracking device, be it a global navigation
satellite system (GNSS)-enabled travel recorder, a navigation device or a GPS,
GLONASS and/or Beidou enabled mobile phone. The only requirement is that
tracks can be recorded and exported from the device. Such tracks are stored
in the GPS exchange format (GPX). Some devices may need conversion from
a vendor-specific format. GPX data looks similar to Listing 6.1 [70].

<trkpt lat="46.6502751969" lon="11.5866007190">

<ele>543.28</ele>

<time>2015-09-06T07:58:04Z</time>

</trkpt>

<trkpt lat="46.6489102878" lon="11.5852427669">

<ele>542.32</ele>

<time>2015-09-06T07:58:34Z</time>

</trkpt>

Listing 6.1: GPX file example

89

Chapter 6. Enhancements on Isochrone Application

With the knowledge of time, elevation and position (given by latitude and
longitude), it is possible to extract information needed to create a raw profile.
The distance can be computed using the positions of two points assuming a
straight line. Speed can be obtained using distance and time information. Fi-
nally, slope can be computed from the elevations at the positions. To improve
the elevation values, it makes sense to apply a Kalman filter [54] to those val-
ues, if it has not been done by the recording device. To reduce noise in the
signal even more, averaged values are taken every 200 meters [70]. The last
thing that is missing, is information about the way type. To determine it, the
track defined in the GPX file is snapped to the edges in the road network.
From the matched edges metadata is extracted in order to determine the way
type. This process is known as “map matching” and described in detail by M.
Malfertheiner [70].

After a raw profile has been created with the help of tracks defined in GPX
files, it needs to be further processed. The reason for this is, that it will
most likely contain a lot of empty cells (null values). The fact that not all
cells in a raw profile will be filled, leads to the definition of a profile as two
dimensional matrix. One could even use a three dimensional model where
the added dimension equals the ways surface. However, surfaces are either
part of the way type definition or are rarely known during dataset creation.
Therefore, for surfaces a correction factor (the surface speed factor) is used
instead of tailoring the behavior on different surfaces to individuals.

Missing rows are not that much of a problem in a raw profile, e.g. people
driving around a lot with cars do not need information on how fast they would
be on a designated cycle path, since they are not allowed to drive those ways
anyway. However, empty cells in a row constitute a problem. That means that
speed values for e.g hiking paths are available, but not for all slopes. This is
solved by curve-fitting which also helps to correct incorrect values of the raw
profile that can occur if the tracking device has a too low sample frequency or
delivers inaccurate positions. Since speeds should decrease on inclines and get
faster on declines, a suitable mathematical function is an inverted Sigmoid-
curve [45]. In order to fit this S–shaped curve to the samples from the raw
profile, a special version of the Sigmoid curve, the so called inverse logistic
function (or inverse logit function), is used [66]. It is extended by an addition
of a minimal value d:

f(x) = d + L ∗ (1 −
1

1 + e−k(x−x0)
)

• d = the curves minimal value
• L = the curves maximal value (the upper bound; largest value is L + d)

90

6.4. User Tailored Isochrones

• k = the steepness of the curve (its “growth rate”)
• x0 = the x-value of mid-point of the curve (its inflection point)

With the help of this function a noisy and incomplete raw profile can smoothed.
The entries from the raw profile are weighted by the distance stored in it, so
that the importance of more accurate values (that were collected from multiple
way segments or longer ways) is increased. In Figure 6.4 a possible curve fitting
result is shown for a cyclist on way type “SMALL_WAY _PAV ED”. The
size of the points from the raw profile equals their importance and is used for
weighting.

−20 −10 0 10 20
0

10

20

30

40

Slope (in %)

A
ve

ra
ge

sp
ee

d
(i

n
km

/h
)

raw profile entries
f(x) = 8+
(28 − 28

1+e−0.5∗(x+2.5))

Figure 6.4.: Raw profile for a cyclist on a small paved way.

The Sigmoid curve that is used for smoothing will correct the outlier at slope
-7% and will also fill empty values in the profile (the values from -30 up to
-11 and from +13 until +30). This method of curve fitting only works if the
data points are well distributed. To overcome this problem, only way types
with entries summing up to a total distance of at least ten kilometers are
used. In addition, artificial points (known as control points) with a small
distance of 50 meters are added from the speed methods described in the
previous Section 6.3. For way types missing in the raw profile or for those
not matching the minimal distance criterion, speed computation falls back to
using non–user–tailored methods which have been described in Section 6.3.

The resulting profile, the so called “user profile” can then be used during
isochrone computation to look up speed values on specific way types and slopes
and therefore is able to tailor the computation to individuals. Therefore, the
performance of the isochrone algorithms is not diminished when using the
smoothed user profiles.

91

CHAPTER 7

Generalizing Dataset Creation

To compute isochrones in Multimodal Spatial Networks, data about these net-
works needs to be available. Besides synthetically generated networks that are
created with the help of mathematically modeled rules, datasets representing
networks that model regions of the real world are of most interest. A first
real-world dataset representing a Multimodal Spatial Network has already
been shown in Figure 3.11.

A major problem when using transportation networks including schedule based
means of transportation, is that there is no standard or even a best practice
on how such datasets should be generated. Even more problematic is the fact,
that there exist no freely available Multimodal Spatial Networks that can be
used for comparing own research with existing approaches.

Therefore, a workflow is defined throughout this chapter during which a
dataset is created. The whole process is an implementation of the extract
and transform parts of an Extract, Transform, Load-process (ETL-process)
that is well known from the field of Data Warehouses. The described dataset
creation workflow has been published by Krismer et al. at the AGIT con-
ference 2016 [64]. An implementation of this workflow is freely available as
open-source [61], which has been termed “OpenStreetMap and Public Trans-

Chapter 7. Generalizing Dataset Creation

Step 3Step 2Step 1 Step 5Step 4

Start

Data ✁ltering
(osmosis)

Data processing
(osm2po)

Linking
Optional

data optimization

Storing in DB
(PostGIS)

Data export
(pg_dump)

End

Recalculate vertex degrees

Determine nearest edges
of transportation stations

Storing in DB
(PostGIS)

Conversion to GTFS
(OneBusAway)

Data ✁ltering

Schedule optimization
(OneBusAway)

Storing in DB
(PostGIS)

Data acquisition
(GTFS, VDV)

Data acquisition
(OSM; Geofabrik)

Figure 7.1.: Dataset creation workflow.

port Information to Multimodal DataSets” (osmPti2mmds). The steps that
are needed to create datasets are shown in detail in Figure 7.1.

In general, there are five major steps, whereby each one will be described in a
separate section:

• Step 1 - Street network extraction: Discusses the selection of appropri-
ate data source from which information about road networks can be
acquired. Furthermore, data filtering and optimization of the resulting
graph is done in this step. After all actions have been carried out, a net-
work represented by solely continuous space and continuous time edges
is available.

• Step 2 - Data retrieval and format conversion for public transportation
systems: Explains how data about schedules for public transportation
systems is converted, filtered and optimized in order to be suitable for
isochrone computation.

• Step 3 - Linking different data sources: In this step a method is estab-
lished, that is used to link the road network (created in step 1) with
the public transportation system data (from step 2). After this step the
underlying graph represents a Multimodal Spatial Network (MMSN).

• Step 4 - Optimizing and extending data: In this step information from ad-
ditional data sources, is combined with the MMSN. Although isochrones
can be computed in these networks when skipping this step, the per-
formed actions are a mandatory step for multiple algorithm enhance-
ments from Chapter 6. The preprocessing steps for the MineR(X) algo-

94

7.1. Street Network Extraction

rithms, as well as the elevation data preparation is carried out in this
phase.

• Step 5 - Data export: The last step in the workflow is to export the pre-
pared dataset. This is done to enable comparisons between researchers,
to ease evaluation across various setups and to respect the license of vari-
ous data sources used during dataset creation. Exports can be converted
into various database formats, e.g. database dumps PostgreSQL/Post-
GIS, Oracle Spatial, Sqlite/SpatiaLite and Neo4J Spatial.

The process of dataset creation implemented by osmPti2mmds allows to create
time-dependent network models. To some extend also the creation of time-
expanded models is available in osmPti2mmds. However, since optimization
and data extension has only been implemented for a time-dependent model,
for the remainder of this chapter such a time-dependent model is assumed. It
can also be noted that datasets are always created from scratch. Although an
incremental method could be implemented for the road network and for transit
schedules, the proposed approach always computes from scratch. That is
because updates within the graph would affect running computations and that
actions carried out during dataset optimization would also have to support an
incremental approach, which is not trivial especially for the vertex density
computation.

7.1. Street Network Extraction

It is obvious that when computing isodistances and isochrones in transporta-
tion networks, information about streets is mandatory. However, information
about them can not be easily acquired, since in many parts of the world such
data is not freely available. Well-known services from Apple, Google, Here
and Microsoft are offered under a proprietary license. As a result, they can be
accessed using an Advanced Programming Interface (API), but do not allow
the export of the underlying data. Therefore, these providers are not feasi-
ble for the creation of a graph and the development of algorithms. For some
countries, data can be obtained from the government services directly. This
is for example true for the United States, where the Topologically Integrated
Geographic Encoding and Referencing system (TIGER) is licensed under pub-
lic domain, and for Austria (since 2016), where the formerly non-free dataset
“Graphintegrations-Plattform” (GIP) has been licensed under Creative Com-
mons 3.0 AT. There still remains the problem that data is not freely available
for other states of the world. Even for publicly available information, different

95

Chapter 7. Generalizing Dataset Creation

data formats are used, making the data hard to compare and research on them
cumbersome.

These circumstances led to the development of the OpenStreetMap (OSM)
community project that was founded in 2004 by Steve Coast. It aims to sup-
port and enable the development of freely-reusable geospatial data, including
information about streets. Work about OSM quality has been listed by Kris-
mer et al. [65]: “Quality analyses have been a topic of research since the
beginnings of the project [56]. Depending on the geographic region it varies
[38, 80], but in contrast to other datasets it is of near global coverage, up-
to-date, accessible for everyone without paying fees. The quality of the road
network, which is of great importance when computing isochrones, has been
examined by various researchers and was summarized by Neis et al. in [86]
and more recently by Brovelli et al. in [15]. Especially in urban areas data is
of good quality, whereas it can be poor in rural areas.”

At the time of writing, OSM includes a little more than 110.500.000 ways all
over the world [121]. According to M. Maron, who measured completeness of
the road network by comparing its length against the CIA Factbook [30] in
2015, roads are well covered in OSM for all continents. The research performed
by Maron led to the development of an application [71] that allows to carry
out this completeness check for different regions of the world. There are still
states left with a low road network coverage, especially China and India. In
addition, comparing only the length of the road network leaves a hint about
the coverage, but does not include an evaluation about the metadata of streets,
e.g. the maximum speed allowed on a highway. However, many of the freely
available datasets have been integrated into OSM, making it the best choice
for a real-world road network source.

OSM is not only suitable because of its data quality and completeness. It
allows to export the road network or parts of it at the database level and does
not only offer services to access the data. Geofabrik [36] for example offers
downloads of OSM database exports that have been sliced by geographical
regions, mostly states. Slicing regions out of the so called “planet file” is a
common strategy to ease the handling of geographical data collections. The
elaborated dataset creation workflow uses the same mechanism in order to
create datasets of city and state size. During this process, so called “boundary
polygons” are used for data filtering. They are created from OSM data itself,
and besides dataset creation they are also used in the application presented
in Chapter 8.

For the application of isochrone computation it is further important to intro-
duce the concept of routable graphs. What can be seen from the visualization

96

7.1. Street Network Extraction

and especially from the placing of the vertices, is that there are a lot of un-
necessary ones when it comes to routing. Vertices are often used to define the
shape of a street within a road network, which can be seen on curves of streets
in Figures 3.7 and 3.11. Since no left or right turns or junctions are involved
on these vertices, they can be omitted when it comes to routing. The resulting
routable graph is shown in Figure 7.2.

Figure 7.2.: Spatial routable road network modeling the city center of Inns-
bruck.

To implement a routable graph, a hypertournament can be used. The geom-
etry of streets is then modeled with the help of hypervertices, while only the
starting and ending vertices need to be regarded by the routing and isochrone
algorithms. Depending on the data this reduces the number of vertices by
far (in Figure 7.2 a little more than 51% of vertices can be omitted without
loosing routing information). Only when regarding the length of the edges
the very shape needs to be considered, so that when converting a graph into
a routable graph the information about length is stored as property aside the
others edge attributes. When it comes to OSM, attributes commonly stored
with edges representing streets are maximum speed allowed, surface, way type,
road width, number of lanes, a oneway flag as well as information about ve-
hicles allowed to use the street. Therefore, all the information needed during
isochrone calculation is at hand.

The creation of a routable graph out of OSM data is done with the help
of osm2po [79]. This software allows for sophisticated configuration of the
data processing step. It also is extensible so that all the information from
OSM, such as way type and surface, can be included. The result of the data
processing are SQL-files that then can be used to import the routable graph
into a database. The format uses a relational scheme, that stores directed
edges identified by start and end vertex. Information about the intermediate

97

Chapter 7. Generalizing Dataset Creation

vertices on such an edge is stored in a separate geometry column with a specific
datatype that supports the “Simple Features” specification defined by the
OpenGIS Consortium (OGC) [91]. If more information about the vertices are
of interest, they need to be joined with a separate relation, that can also be
generated from the created SQL-files.

7.2. Public Transport Schedules

To include information about public transportation and the schedules as-
signed to such systems, data has to be gathered from multiple sources.
OpenStreetMap does not provide or even seeks to provide schedules for the
public transportation system. The reason for that are besides copyright issues,
that schedules change quite often and need regular updates. If they are not
provided by the defining companies themselves, they are hard to keep up-to-
date. The founder of the OSM project, Steve Coast, tried to implement a
solution which was called “Transiki” [95] in 2010 anyway, and failed only half
a year later.

The General Transit Feed Specification (GTFS) has become a de-facto stan-
dard for public transportation schedules. As a result, a growing number of
transportation companies are providing files in this format. These files can be
used to enrich the graph created in the previous step with discrete space and
discrete time edges, making it a truly Multimodal Spatial Network. There are
also some approaches like Transit.land [72] and Transitfeeds.com [20] that col-
lect GTFS files from various public transportation companies, easing to find
regions for which a Multimodal Spatial Network exists.

For some cities information is available in other digital formats, including
HAFAS, DIVA, VDV452 or TransXChange. In such cases a transformation
step is necessary that converts the data into the GTFS format for the workflow
to handle it. However, this conversion introduces a potentially erroneous step
and should be avoided whenever possible.

As soon as data is available in GTFS format, a filtering on the data and some
optimization is performed. The filtering process basically targets the same as
the data filtering does for geographical data in the first step. The schedules
are narrowed down to a specific bounding polygon, in order to reduce the
amount of data that needs to be stored in the database. The optimization
step restructures the information again to aim for less data without losing
relevant information. This is possible since GTFS allows to store the dates
on which a certain bus is available in multiple ways, either as single date

98

7.3. Data Merging

values or as re-occurring weekdays within a time span. Besides the schedules
a GTFS file also contains information about the location of stations as well as
trips connecting the stations. Therefore, a graph that is enriched by schedule
information can be created from these files.

At the end of this step, the data about the road network and the schedules
of the public transportation system can be stored in a database side-by-side.
This allows merging both information in the next step.

7.3. Data Merging

Although all the information needed about the road network and the public
transportation systems is stored aside in the database, it is not connected.
This means that the network will not allow for a multimodal usage and stick to
the starting modality throughout computation. This is changed in step three
of Figure 7.1, the data merging step, that interweaves the road network with
(possibly multiple) public transportation schedules. In order to connect the
various networks, the vertices of the underlying graphs need to be connected
somehow. This is done in a three-step-process that is carried out for every
vertex in every public transportation system:

• Vertex projection
• Linking vertex creation
• Weaving

At the beginning the vertex from the discrete public transportation system
graph is projected to the continuous road network. Starting from the discrete
vertex, the nearest edges in the continuous network are determined. Then, the
nearest position on the edges to the discrete vertex is determined. It either
equals the start or end vertex of the edge or is located in between. When the
location equals an already existing vertex, the second step can be omitted,
continuing with the very vertex as the linking vertex. If the location is located
on the edge between start and end vertex, the found edge(s) is/are connected
by using an orthogonal line on the edge through the discrete vertex. In differ-
ence of just using the nearest vertices from the continuous graph, this method
guarantees to use short graph interconnections. Basically this approach equals
the method that is applied when projecting a query point into the road net-
work at the beginning of the algorithms described in Chapter 4 and 5.
At the intersection between the orthogonal line(s) and the edge(s) in the con-
tinuous graph, newly created vertices are added to the continuous graph, if
there were no vertices at that position in the graph.

99

Chapter 7. Generalizing Dataset Creation

From this vertex two edges are created between the new continuous vertex
and the discrete vertex connecting the various modalities (one for each di-
rection). These edges are called graph interconnection, graph links or simply
links throughout this thesis. The described approach is shown in Figure 7.3.

dstation

c1 c2

(a) Disjoint graphs

dstation

c1 c2

(b) Vertex projection

dstation

clinkc1 c2

(c) Linking vertex

dstation

clinkc1 c2

(d) Weaved networks

Figure 7.3.: Network graph weaving.

After the various networks have been weaved the different network vertices are
iterated to check for identical geographical position. If multiple vertices were
found at the very same location, then graph links are inserted between all of
them. This allows to change modalities across various public transportation
systems that have not been part of the same GTFS file.

Since vertices have been deleted and added, links could have been added to
existing vertices. The information about the vertex degree is stored by osm2po
in the database, but after the data merging the values are incorrect. Therefore,
the degrees in the weaved graph have to be corrected by re-calculating them.
After this has been performed, the resulting Multimodal Spatial Network is
stored in the database. It could already be exported and used for isochrone
computation. Since algorithms and enhancements require additional data or
include preprocessing steps, another step is carried out.

7.4. Dataset Optimization

The dataset optimization is an optional step, that performs multiple things:

• Dataset enrichment with elevation data
• Preprocessing of average de- and inclines to speed-up elevation awareness
• SpiderWebGraph generation to allow for traversing of areas/places
• Materialized view creation to speed up computations
• Vertex density computation used by MineR(X) algorithms
• Transforming the schedule representation to an interval-based model

100

7.4. Dataset Optimization

• Tile table creation to allow MineT(X) algorithm usage on non-spatial-
databases

The actions address multiple issues, which will be discussed in the upcoming
two sections.

7.4.1. Elevation Data

Information about elevation needs to be added to the network in order being
able to compute user profiles and to allow for elevation aware isochrone com-
putation. Data about elevation is available in form of Digital Elevation Models
(DEMs). Research about them has been carried out together with Silbernagl
et al. [114]. Although there are many DEMs available, only some of them are
freely available. Less are of global, or at least near global, coverage. How-
ever, a DEM has been created within a eleven day mission of the space shuttle
Endeavour in February 2000. It covers the entire surface of the earth only
excluding the polar regions. The resulting data is known as the Shuttle Radar
Topography Mission (SRTM) dataset. Since the result misses information in
some locations, e.g. due to reflections or objects blocking the radar, the data
has been postprocessed with several different approaches. SRTM is available
in two different resolutions. The dataset with lower resolution records points
with assigned elevation every three arc-seconds (equaling to approximately 90
meters). The dataset has been released into public domain, allowing others to
develop approaches to correct voids and to improve data. Such an improve-
ment is developed by the Consultative Group for International Agriculture
Research known as CGIAR dataset. However, there are multiple versions of
the datasets, for example CGIAR v4 or SRTM v4.1. Each version includes im-
provements, like equaling the level of the oceans, resulting in the fact that not
every improvement on the original dataset produces a better dataset than the
next version of the original SRTM data. In addition to the three arc-second
dataset (known as SRTM-3), at the end of 2015 another one arc-second dataset
(known as SRTM-1) was released into public domain. Until then this resolu-
tion (which equals approximately 30 meters) was only available for the United
States.

Data from SRTM-3 and SRTM-1 datasets are applied in the latest version
available to the Multimodal Spatial Network that was created in the previous
steps. Doing this every vertex and hypervertex are enriched with elevation
information. Interpolation is applied to be as exact as possible and to not
solely rely on single values from the dataset. There remains a major problem
that needs attention. If a street in the network is very long and without
curves, only the start and end vertex could be modeled. There is simply no

101

Chapter 7. Generalizing Dataset Creation

need to use hypervertices that are used for geometric representation. Without
the hypervertices a hill in between could simply be missed. This has also been
explained in Section 6.3 when introducing the Nyquist frequency, but also
needs to be regarded during dataset creation. Therefore, edges are extended
with intermediate hypervertices, allowing to add elevation information without
missing hills on long, straight streets.

A similar approach that OpenStreetMap is to geographical data, is OpenDEM
[100]. It improves data from the SRTM dataset by using contextual informa-
tion from OSM that is applied to the digital elevation model. For some regions,
where there are official DEMs freely available from governmental or other insti-
tutions, OpenDEM integrates such information. However, although it builds
on data from SRTM, it is not of global coverage. This and the fact that various
data sources are included make it impossible to compare computation results
across the globe.

After elevation data has been integrated into the Mulimodal Spatial Network,
an elevation aware computation can be performed with the methods described
in Section 6.3.

7.4.2. Computed Information

Multimodal Spatial networks can be extended with information that is created
by preprocessing steps. From the elevation data that has just been added to
the database average values for declines and incline can be computed. By
further adding the distance on which an edge inclines (in percent), elevation
aware computation can be simplified. Instead of computing the slope between
every hypervertices within the network, the computation has only be done
once per edge (which typically includes multiple hypervertices).

A problem arises due to the manner OSM models places, such as the central
square in a city. There must not exist edges that connect the streets starting
(or ending) in such a plaza. Instead, the area is tagged by a separate metadata
field, marking it as polygon that should be used for routing. While some algo-
rithms only use the borders of these polygons, a more sophisticated solution
can be realized when utilizing an additional preprocessing step. During this
step a so called “SpiderWebGraph” is generated [27]. The resulting continuous
edges and vertices are merged with the Multimodal Spatial Network, allowing
all algorithms capable to compute isochrones to route over polygons.

To further speed up computation materialized views can be used in the
database. For the algorithms MineR(X) and MineT(X) database tables need

102

7.5. Exporting and Providing Datasets

to be joined. When using a materialized view that represents the joined ta-
bles, the time needed for the join can be shifted into dataset creation. This
increases the file size of the dataset, but allows faster computation.

The vertex density table, that is necessary when limiting ranges that are loaded
by the MineR(X) algorithms and which has been described in Section 4.2.3
and Table 4.1, is also created in the dataset optimization step.

If a database that does not include spatial database functions is utilized to
store the datasets, the algorithms MineR(X) and MineT(X) can not be used.
This can not be changed for the range loading MineR(X) algorithms, but
if during dataset creation a spatial database is used, an additional database
table can solve this issue for the MineT(X) algorithms. A simple table as-
signing every vertex to a tile at various zoom levels eliminates the need for
the spatial functions. With the resulting table that contains the columns
(vertex, zoomLevel, tile) it then is possible to load all vertices within a tile
without the need to create bounding boxes and without using containment or
intersection operators.

Additional transformations of the network are also performed in this step of
the dataset creation workflow. As mentioned in Chapter 4 the underlying
representation of the schedules should be changed from an instance-based rep-
resentation to an interval-based model. This modification is applied during
this optimization step before it is exported.

7.5. Exporting and Providing Datasets

After the four previous steps have successfully been performed, a valid and
preprocessed Multimodal Spatial Network is stored inside the database. It
can be either postprocessed or exported directly by using database function-
ality. The postprocessing step has been used throughout several bachelor and
master theses which were carried out at the University of Innsbruck that eval-
uated isochrone computation runtimes across various databases and database
types.

Besides a PostGIS enabled PostgreSQL database also SpatiaLite and Neo4J-
Spatial seem suitable to compute isochrones. SpatiaLite can be easily used to
keep datasets entirely in memory allowing fast computation after initial load-
ing. Although this delivers great performance for the queries used by Mine(X),
performance drops for the MineR(X) algorithm and when regarding schedules
of the public transportation system SpatiaLite can not keep up with PostGIS.

103

Chapter 7. Generalizing Dataset Creation

In addition, the performance of SpatiaLite suffers as soon as spatial func-
tionality is used [107]. The performance of isochrone computation within the
graph database Neo4J-Spatial is not as good as it is in PostgreSQL/PostGIS.
Depending on the access mode, it is usable (in embedded mode when using
the Cypher query language), but still not as fast as PostGIS [11]. However,
by further optimizing the graph representation for Neo4J-Spatial or by using
direct access to the stored graph, e.g. by using the query language Gremlin
instead of Cypher, performance could still be improved.

To allow comparison across different research groups and to ease using Multi-
modal Spatial Network for various purposes, some datasets that were created
with the process described in this chapter can be downloaded from the Uni-
versity of Innsbruck [59].

104

CHAPTER 8

The Application IsoMap

Isochrones and the reachable areas describe locations that are reachable with
or within a certain time duration. Therefore, the results can be visualized.
The graphical representation adds information that otherwise would be hard to
record and eases interpretation of the outcomes. As the proverb says, a picture
is worth a thousand words. Therefore, a graphical user interface has been real-
ized that serves as prototypical implementation to view isochrone computation
results. It has been named “IsoMap”, since it shows a reachable area together
with the isochrone on top of an interactive map. The web application is freely
available to everybody on https://dbis-isochrone.uibk.ac.at [60] or as
source [61].

IsoMap is not the first attempt to draw isochrones on top of a map. The web-
based system “ISOGA” allows for reachability analyses as well [52]. Another
user interface named MineX (like the algorithm) used to introduce the MineX
algorithm in 2012, was developed. ISOGA (and MineX) did not match ex-
pectations regarding performance, robustness and usability. Therefore, a new
approach has been implemented.

https://dbis-isochrone.uibk.ac.at

Chapter 8. The Application IsoMap

8.1. System Architecture

Like ISOGA, the new application IsoMap builds on web technologies and a
three-tier architecture. By design, IsoMap is much more flexible when com-
pared to ISOGA. Although IsoMap still is capable of using OGC standards
for communication, newer techniques have also been realized. The Javascript
Object Notation (JSON) can be used for communication through a REST-
API or with websockets. Spatial Reference Identifiers (SRIDs) are handled
correctly by the system for the geographical information. Whenever commu-
nicating with the backend, coordinates are given in SRID “EPSG:4326”, while
every valid SRID known to the database can be used within the database.
To increase performance, web optimization technologies like minification on
Javascript (JS), HyperTextMarkupLanguage (HTML) and Cascading Style
Sheets (CSS) were applied. In addition, compression is applied using the De-
flate algorithm, keeping the processing of large isochrone results fast.

Results can either be sent to the client using a Web Map Tile Service (WMTS)
provider (like Geoserver) or by using GeoJSON. GeoJSON itself uses the Well-
Known-Text (WKT) representation to describe geographic objects. The dif-
ference between using WMTS and GeoJSON is, that WMTS information is
created on the server. Results are then sent as rastered images to the client.
In contrast, GeoJSON sends the vendor based result information directly as
text, allowing result manipulation by the client. When it comes to online
maps, GeoJSON can be of benefit, since zooming the map can be done with-
out contacting the WMTS server. When using the OGC standard, information
would have to be transferred for every zoom level.

The resulting three tier architecture consists of the following elements:

• A spatial database (in the Data Tier)
• The servlet container that uses REST and HTML websockets. It also

delivers JS, HTML and CSS files to clients (in the Application Tier).
• An OGC compliant WMTS server (in the Application Tier).
• Web browsers running on various platforms, such as desktop systems,

laptops, smartphones and other mobile devices (in the Presentation
Tier).

106

8.2. Operating Principle

8.2. Operating Principle

When opening the IsoMap web application, three files are sent to the client.
The website itself, as HTML-file. Then the design information (as minified
CSS-file) and at last the behavior information (as minified JS-file). After-
wards, the client executes the main function in the JavaScript file which opens
a HTML5 websocket connection to the webserver. Next, configuration in-
formation is requested by the client. On this request, the server assigns an
identification number to the client and sends information about the datasets
that are stored in the database. Also the user profiles that are available are
determined and sent to the client. Since an interactive online map is used,
some more requests will be sent to tile servers delivering the so called “base
map” (which is provided by an OpenStreetMap service for example). IsoMap
itself includes advanced caching of the map tiles in a browser-enabled database
(a PouchDB instance), so that communication with web map tile services is
reduced to a minimum.

After this initial loading step has been carried out, the user in front of the
web browser now is able to search for locations on the map either by using
geocoding functionality (name to latitude/longitude) provided by IsoMap or
by browsing the interactive map. When selecting a location it is analyzed for
isochrone computation suitability. In particular, this means that the datasets
which have been retrieved with the configuration object before, are checked
for inclusion of the selected point. This is done with two operations and has
been inspired by spatial database inclusion checks. First, the bounding box
of all the datasets is used the check for location inclusion. This can be done
without any further communication to any server, since the bounding box
information is included in the configuration. If matching datasets are found,
additional information is requested from the server. The information equals
the boundary polygon of the dataset. This boundary polygon is the same that
has been used on dataset creation which was described in Chapter 7. Only if
the selected location lies within the bounding polygon, the location is suitable
for isochrone computation. One of the datasets the point is located within can
then be selected and used for isochrone computation.

If the selected point is suitable, then the user has to enter a starting (or ending)
date and time as well as a maximal travel duration. This information is used
together with some configuration properties and send to the server. These
properties can be changed in a separate dialog and include:

• Algorithm: The algorithm that should be used for computation. In-
cludes all the algorithms described in Chapter 4 and Chapter 5. The list

107

Chapter 8. The Application IsoMap

covers the eight algorithms MDijkstra, Mine, MineX, MineR, MineRB,
MineRX, MineT and MineTX.

• Network mode: Sets the method how the underlying datasets graph is
treated. Besides “Isochrone (unimodal)” and “Isochrone (multimodal)”
also “Isodistance” or “Automatic” can be chosen. The automatic mode
changes between unimodal and multimodal isochrone computation, de-
pending on the dataset.

• Direction: Describes in which direction the computation is performed.
Can either be “Incoming” (to the query point) and “Outgoing” (from
the query point).

• Speed estimation: Lists the approach that is used to estimate speeds. It
includes all the methods explained in Section 6.3 and also the available
user profiles. At least the methods “Bike”, “Bike (+elevation)”, “Walk-
ing”, “Walking (+elevation)”, “Fixed”, “Simple”, “Simple (+elevation)”
and “Automatic” can be selected. The difference between the fixed and
the simple modes is that the fixed mode always uses the same speed on
every road, while simple applies an upper bound. The automatic mode
either uses the walking mode or the elevation aware walking mode de-
pending on the fact, if the dataset the isochrone is computed in, includes
elevation information.

• Enclosure: The algorithm used to create the isochrones enclosure. Be-
sides server based methods also some methods computing the result on
the client (in JavaScript) are available.

• Expiration mode: A flag that enables visualization of the vertex states
instead of showing information about the public transportation system.

• MultiIsochrone: A flag that allows to compute multiple isochrones with-
out clearing a previous result. This can be useful when searching for
locations that are reachable from multiple query points.

After the server received the information, it starts to compute the isochrone.
Depending on the dataset, the maximal travel duration, the configuration and
the system setup, the duration can last from some milliseconds to multiple
seconds and even minutes. This is where IsoMap provides a significant advan-
tage over the ISOGA and MineX. Since websockets are used, the application
does neither use polling techniques (such as long polling) that increase the
server’s load, nor does it need to worry about possible timeouts.

The result can either be sent as GeoJSON object or with the help of an WMTS
server. Using a Web Map Tile Service gives the advantage that information
is customized to the current zoom level of the map. This means that for very
large results, e.g. the reachable area covers all the middle of Europe, only
some (relatively small) images are transferred. If the same result would be
sent as vector-data, more bytes would have to be transmitted. The opposite

108

8.3. Features of IsoMap

effect occurs for small results. In such cases transferring images always results
in transferring more bytes than just some small GeoJSON data. This could
be changed if the vector data would adapt to the zoom level on the client.
However, this behavior is not implemented in IsoMap, since it would also
increase the number of requests when navigating the interactive map.

8.3. Features of IsoMap

IsoMap provides several functionalities. The most important ones will be
shortly explained in the next sections.

8.3.1. Visualization of Isochrones

The data that has been sent to the client is visualized with layers. Depend-
ing on the configuration used, different layers are available. For MineR(X) or
MineT(X) information about the loaded ranges/tiles is available. For all algo-
rithms the reachable area, the reachable ways and information about transit
stations is available. Besides the computation results, also a base layer (the
lowest level of the map) and a hill shading layer can be activated using client
functionality. IsoMap visualizing the default OpenStreetMap base layer and a
computed isochrone is shown together with all available layers in Figure 8.1

Figure 8.1.: IsoMap showing all available overlays.

109

Chapter 8. The Application IsoMap

By default, IsoMap shows the result after the calculation has finished. More-
over, there is a prototypical implementation available, that plots the result
during computation. This way of visualization is called “incremental visu-
alization” and has been researched together with J. Winder throughout his
Bachelor thesis [129]. It became obvious that although incremental visualiza-
tion can be usable for very large results, the major problem is the computation
of the borderline after the graph of all reachable locations has been created.
In terms of the definitions given in Chapter 3, the problem is to compute the
isochrone, not only the reachable area. Therefore, multiple algorithms have
been implemented that create the isochrone from the reachable area. They
can be chosen with the parameter “Enclosure” in the configuration dialog.

The base layer is the only one that can not be hidden. The visibility of
all the other layers can be toggled. That is why all those layers are called
overlays. However, even the base layer can be exchanged. Available base layers
in IsoMap include various derivatives from OpenStreetMap, e.g. OSM Hot and
OSM DE. In addition, base layers from Microsoft Bing and even Google Maps
can be used. For the region of Austria the BaseMap, including governmental
data, can be chosen from the list of base layers. In Northern Tyrol also layers
from the Tiroler Rauminformationssystem (Tiris) are available.

8.3.2. Vertex Expiration Information

There is a special visualization mode available that allows to visualize the
states of the vertices that have been used during computation. It is called
“expiration mode” since its initial use was to understand vertex expiration that
has been explained in Chapter 4. If this mode is used additional information
can be figured for all the vertices. Besides the information to which disjoint
expiration group the vertex belongs (either O, C or X) also graph’s vertex
id and the time that was needed to reach the vertex as well as the remaining
duration is shown.

In the Figure 8.2, the white vertices correspond to the expired group X, the
gray ones belong to the group C. The black ones have been loaded, but not
expired and therefore are part of the open group O.

8.3.3. Public Transportation System Usage

To gather further insights and to better understand how the result was com-
puted, information about the public transportation system can be explored

110

8.3. Features of IsoMap

Figure 8.2.: Vertex expiration mode in IsoMap.

within IsoMap. For each station, a contextual menu can be accessed that al-
lows to view departure (or arrival) times of bus routes. Although routes are
stored in order to display their names, the course of a route is not displayed as
part of the isochrone. However, IsoMap is able to illustrate the course using
information provided by the OSM transport base layer. Data about the course
of a route is stored in OSM, although the schedules are not recorded. The con-
textual menu together with the transport base layer is shown in Figure 8.3.

Figure 8.3.: IsoMap showing information about transport systems.

111

Chapter 8. The Application IsoMap

8.3.4. Spatial analyses

IsoMap is able to request additional information for visualized results from
external sources. Information from OpenStreetMap can be combined with
the result and overlaid with the calculated reachable area and the resulting
isochrone. This way spatial analyses can be carried out within IsoMap.

Figure 8.4.: Spatial analysis carried out in IsoMap.

In Figure 8.4 an isochrone is visualized that is further used to determine the
number of restaurants that are reachable within ten minutes when starting
from the query point. The result is shown in the top left corner, stating that
out of 272 restaurants in the city of Innsbruck, Austria a total 106 restaurants
are reachable from the main station within ten minutes (when starting on the
19th of October in 2017 and using public transport).

Similar analyses are also possible for schools, universities, nursery schools
and colleges. Hierarchical grouping of analyzable facilities is also possible,
so isochrones can be checked for inclusion of “educational buildings”. More
categories could easily be added to IsoMap, but for demonstration purposes
only educational facilities and restaurants have been implemented.

8.3.5. Averaged and Time-invariant Isochrones

In Chapter 5 averaged isochrones and time-invariant isochrones were intro-
duced. To allow visualization of the results created by these enhancements, a

112

8.3. Features of IsoMap

separate tool has been integrated into IsoMap. Because the geometry of in-
termediate results are used for processing, it is termed “geometryCalculator”
and is available in the map’s plugin list at the bottom right. After selecting a
query point, the tools utilizes a dialog to asks for some settings. In addition
to a time span (given by starting date and time as well as ending date and
time), the mode and the number of intermediate results have to be selected.
The mode allows to select “Averaged isochrone”, “Time-invariant isochrone”
and the combination “Averaged and time-invariant isochrone”.

After all settings have been entered, the tool is able to compute the interme-
diate results and sends information about them to the client. The information
is then used to create the result referred to by the mode. The result actu-
ally is the thick black border, whereas the single intermediate reachable areas
are overlaid in green with a transparency of 25%. The example used for ex-
plaining averaged isochrones throughout Chapter 6 is shown in Figure 8.5.
Time-invariant isochrones would be shown in a bluish color.

Figure 8.5.: Averaged isochrone in IsoMap.

8.3.6. Traversing of Areas/Places

As already mentioned in Section 7.4.2, OpenStreetMap allows to model plazas
with polygons. To allow movement across polygons some preprocessing is
needed. During this step, a so called “SpiderWebGraph” is created as de-
fined by Dzarfic [27]. Since IsoMap is able to show a separate layer for the
traversed edges, these graphs can be easily visualized. Figure 8.6 shows a
SpiderWebGraph laid over the Piazza Walther in Bolzano.

113

Chapter 8. The Application IsoMap

Figure 8.6.: SpiderWebGraph in IsoMap on Piazza Walther, Bolzano, Italy.

114

CHAPTER 9

Evaluation

In this chapter a detailed empirical evaluation of the algorithms that have been
discussed throughout this thesis is given. This is done with the help of two
synthetically generated and four real-world datasets and in a similar fashion
to the empirical evaluation that was performed by M. Innerebner [51].

After describing the test system and the datasets, the data structure that has
been used for the vertex expiration queue is examined at first. Then, the best
adaptive zoom levels for the MineT and MineTX algorithms are determined.
Evaluations regarding the runtime and the memory consumption are given
together with so called “break-even-points” that describe how long algorithms
based on incremental expansion stay faster than the in-memory algorithm
MDijkstra.

9.1. Evaluation System

The system used for the evaluation consists of an Intel R© Core
TM

i7-6700K
combined with 32 GB of DDR4-3200 memory. The base frequency of the 64bit
quad-core CPU is 4.0 GHz, while it allows for eight threads in parallel (using

Chapter 9. Evaluation

hyper-threading) and a maximum frequency (in turbo mode) of 4.2 GHz. The
Z-170 Intel chipset from the mainboard connects to a 256 GB Samsung 950
Pro NVMe M.2 SSD disk drive on which Fedora 26 running on a Linux Kernel
4.13 is installed. Together with PostgreSQL 10 and the PostGIS extension
(used in version 2.4.0) a complete spatial database setup is provided. Like it
is true for the MineR(X) algorithms, the MineT(X) algorithms also make use
of geospatial functions within the database and do not include a preprocessed
tile information table that was discussed in Section 7.4.

To minimize the effects of outliers caused by the operating system itself, the
tests listed in the following subsections were carried out 25 times. All the plots
in this chapter represent the median of the results of those test runs.

9.2. Datasets under Test

The datasets that were used for evaluation purposes have all been generated
in October 2017 with the tool “osmPti2mmds” that was described throughout
Chapter 7.

The synthetically generated datasets refer to a grid based layout and a spi-
der layout. The underlying networks are similar to the ones figured in Fig-
ure 4.1(b) and in Figure 4.1(c). The grid network has an edge length of 100
vertices, while the spider networks has six different axes with 1000 vertices
on every edge. The Spatial Reference Identifier (SRID) for these datasets is
“EPSG:3857”, which models the plain mathematical models. The statistics
for the synthetic networks used during evaluation are given in Table 9.1.

Dataset Size |V | |E| |Ecsct′ | |Edsdt′ | |S|

Grid network 12.52 MiB 10 k 39.6 k 39.6 k 0 k 0 k
Spider network 8.39 MiB 6 k 24 k 24 k 0 k 0 k

Table 9.1.: Statistics about the synthetic datasets

The synthetic datasets consist solely of continuous space and continuous time
edges. Therefore, the computations are all performed in unimodal fashion for
those two. In contrast to the synthetic datasets, the real-world datasets are
true Multimodal Spatial Networks containing continuous and discrete edges.
The SRID of the data is “EPSG:4326” (also called WGS84), that is used by the
Global Positioning System (GPS) to represent arbitrary places on the Earth

116

9.3. Choosing the Data Structure

using latitude and longitude. Statistical measures of the datasets are given in
Table 9.2.

Dataset Size |V | |E| |Ecsct′ | |Edsdt′ | |S|

BER 1569.84 MiB 223.31 k 716.4 k 576.24 k 15.92 k 3074.66 k
BZ 42.89 MiB 6.58 k 17.78 k 16.48 k 0.72 k 49.35 k
SF 256.43 MiB 34.65 k 99.93 k 87.07 k 5.77 k 767.24 k
VIE 775.31 MiB 120.16 k 335.52 k 319.75 k 6.88 k 1354.95 k
WDC 301.45 MiB 41.01 k 122.78 k 109.02 k 7.33 k 698.52 k

Table 9.2.: Statistics about the real-world datasets

The datasets represent the cities of Berlin (BER), Bolzano (BZ), San Fran-
cisco (SF), Vienna (VIE) and Washington, D.C. (WDC). The reasons for this
selection are simple. Berlin and Vienna have been included, because these two
transportation companies in these cities offer schedules in GTFS format. They
model larger cities in Europe, so that computation runtimes are expected to
be large. The datasets of San Francisco and Washington, D.C. represent the
counterpart in the United States. It is believed that cities in Europe model
a more spider-shape network and cities in the U.S. use a grid-based model.
Therefore, cities from these two continents are included. The small city of
Bolzano is used to allow comparison with former publications by Gamper et
al. and also to include a smaller dataset. While the four bigger datasets
have been created directly from GTFS files that were supplied by the public
transportation companies, information about the buses used in Bolzano was
converted from VDV452. However, this process is officially suggested by the
company “Società Autobus Servizi d’Area (SASA)” [117] that provides the
data as open source.

9.3. Choosing the Data Structure

The first evaluation compares different data structures used for the queue that
holds the open vertices (group O). The reason why this is important has been
discussed in Section 5.1 and is now evaluated. The following computations
were performed with the MineR algorithm, since it produces a heavy load
on this data structure. In contrast to Mine(X) a lot of vertices are kept
in O, while regularly a bunch of additional vertices is added (in contrast to
MDijkstra, which holds even more vertices in O). In the following the results
for the datasets BER, VIE, SF and WDC are given. The synthetic datasets
as well as BZ are skipped, since the amount of vertices kept in O is too small
to see a difference in runtime, no matter which data structure is used. In

117

Chapter 9. Evaluation

Figure 9.1 the results for the four datasets listed above are given. On the x-axis
the limiting criterion for the multimodal isochrone computation, the maximal
duration dmax in minutes, is plotted, while on the y-axis the computation time
(in seconds) is used.

15 30 45 60
0

2

4

6

8

10

12

dmax[min]

ru
nt

im
e

[s
]

Binary Heap
Fibonacci Heap
JDK Queue

(a) BER

15 30 45 60
0

1

2

3

4

5

dmax[min]
ru

nt
im

e
[s

]

Binary Heap
Fibonacci Heap
JDK Queue

(b) VIE

15 30 45 60
0

0.5

1

1.5

2

dmax[min]

ru
nt

im
e

[s
]

Binary Heap
Fibonacci Heap
JDK Queue

(c) SF

15 30 45 60
0

0.5

1

1.5

2

dmax[min]

ru
nt

im
e

[s
]

Binary Heap
Fibonacci Heap
JDK Queue

(d) WDC

Figure 9.1.: Comparing expansion queue data structures.

Especially in the European datasets of Berlin (BER) and Vienna (VIE) it
can be observed that the queue of the Java Development Kit (JDK) is the
slowest. Although it uses a JDK internal class, i.e. java.util.PriorityQueue,
and a balanced binary heap, it performs worst in all of the datasets. The
reason for this might be that there is no possibility in the API of the class
to directly change the order of an element in the queue. On decreasing the
network distance of a vertex it has to be removed and re-added with the
updated distance. The two other implementations allow direct manipulation
of the order in the list and perform better. For the dataset of Berlin and a
dmax for one hour the computation time of the Fibonacci Heap implementation
is only 73,4% when compared to the JDK’s PriorityQueue. The runtime of
the Binary Heap implementation is even faster and only 73,0%. However, the
difference between the Fibonacci and the Binary Heap is only 50 milliseconds
for a computation time of a little over 10 seconds. For the dataset of Vienna

118

9.4. Determination of the Best Loading Ranges

results look similar, but with a slight improvement for the Binary Heap when
compared to the Fibonacci Heap. While for Berlin the runtime of the Binary
Heap is 99,6% of the Fibonacci Heap in Vienna it is 98,8% (a difference of
59msec on a total computation time of around 5.2 seconds). In the datasets of
the United States, all the implementations are quite fast, although the same
order of the implementation holds. The fastest is always the Binary Heap
implementation, followed by the Fibonacci Heap and the JDK internal class.
For San Francisco all the implementations stay within two percentage of each
other, while in Washington, D.C. the Binary Heap takes up 95,8%, while the
Fibonacci Heap’s runtime is 96,9% of the JDK queue.

It becomes obvious that the performance of the JDK queue gets worse for
larger computation times that are caused by larger datasets. Although both,
the Fibonacci Heap and the Binary Heap implementation, perform better,
there is a slight advantage for the Binary Heap implementation. When look-
ing at the complexities of the MDijkstra algorithm, this can be explained by
the reduced complexity of the algorithm when using a Binary Heap when
compared to the complexity when using a Fibonacci Heap.

As a result of this evaluation step, all the further steps will be carried out with
a Binary Heap.

9.4. Determination of the Best Loading Ranges

During discussion of the MineR(X) algorithms in Section 4.2.3 the limitation of
the loaded ranges by memory was mentioned. Therefore, it is analyzed whether
choosing ranges according to the remaining duration or always loading a fixed
number of vertices performs better. Calculations are performed for vertex
densities of 1000, 2000, 3000, 4000, 5000 and without limitation applied. The
results are given in Figure 9.2. On the x-axis the maximal duration dmax in
minutes is given, while on the y-axis the computation time (in seconds) is
used.

Although it is quite difficult to examine differences between the different range
limitations in the figures, one observation can clearly be made. MineR without
limiting the ranges performs better than when using a fixed number of vertices.
The reason for that could be that by joining the precomputed vertex density
information takes too much time or that limiting the ranges itself is not of great
benefit. Therefore, range limitations should be avoided whenever possible.
They are not applied during the evaluations carried out throughout the rest
of this chapter.

119

Chapter 9. Evaluation

15 30 45 60
0

5 ·
10−2

0.1

0.15

0.2

0.25

dmax[min]

ru
nt

im
e

[s
]

MineR
MineR1000
MineR2000
MineR3000
MineR4000
MineR5000

(a) BZ

15 30 45 60
0

2

4

6

8

10

dmax[min]

ru
nt

im
e

[s
]

MineR
MineR1000
MineR2000
MineR3000
MineR4000
MineR5000

(b) BER

15 30 45 60
0

1

2

3

4

5

dmax[min]

ru
nt

im
e

[s
]

MineR
MineR1000
MineR2000
MineR3000
MineR4000
MineR5000

(c) VIE

15 30 45 60
0

0.5

1

1.5

2

dmax[min]

ru
nt

im
e

[s
]

MineR
MineR1000
MineR2000
MineR3000
MineR4000
MineR5000

(d) SF

15 30 45 60
0

1

2

3

4

dmax[min]

ru
nt

im
e

[s
]

MineR
MineR1000
MineR2000
MineR3000
MineR4000
MineR5000

(e) WDC

Figure 9.2.: MineR range limitation performance.

9.5. Determination of the Adaptive Tile Ranges

When it comes to the MineT(X) algorithms adaptive zoom levels are of great
benefit. Their determination is done by computing the computation time of
various fixed zoom levels z and then using the zoom level with the best result.

120

9.5. Determination of the Adaptive Tile Ranges

This has been described in Chapter 5 and is now evaluated. The computation
times on the real-world datasets are plotted in Figure 9.3 up to a maximal
duration of one hour. Tile sizes from 12 to 18 are evaluated. This equals a
tile region edge length of 9775,87 meters on zoom level 12 and 152,576 meters
for z equal to 18 (on the earths equator). The x-axis again represents the
maximal duration dmax in minutes, while on the y-axis the computation time
(in seconds) is shown.

15 30 45 60
0

0.2

0.4

0.6

dmax[min]

ru
nt

im
e

[s
]

MineT12
MineT13
MineT14
MineT15
MineT16
MineT17
MineT18

(a) BZ

15 30 45 60
0

5

10

15

20

dmax[min]

ru
nt

im
e

[s
]

MineT12
MineT13
MineT14
MineT15
MineT16
MineT17
MineT18

(b) BER

15 30 45 60
0

2

4

6

8

10

dmax[min]

ru
nt

im
e

[s
]

MineT12
MineT13
MineT14
MineT15
MineT16
MineT17
MineT18

(c) VIE

15 30 45 60
0

1

2

3

4

dmax[min]

ru
nt

im
e

[s
]

MineT12
MineT13
MineT14
MineT15
MineT16
MineT17
MineT18

(d) SF

15 30 45 60
0

1

2

3

4

dmax[min]

ru
nt

im
e

[s
]

MineT12
MineT13
MineT14
MineT15
MineT16
MineT17
MineT18

(e) WDC

Figure 9.3.: Determining adaptive tile ranges in real-world datasets.

121

Chapter 9. Evaluation

For all the datasets it can be seen that the optimal zoom level depends on
the maximal duration dmax of the isochrone. For small durations also smaller
tile regions are of benefit while for larger durations the tile region size should
increase (meaning that z gets smaller). For very large tile regions the initial
loading range would load the entire graph of the dataset, making its mem-
ory consumption equal to MDijkstra. However, the best zoom levels can be
determined by simply selecting the best runtimes for every dmax. Since for
larger durations it is hard to see the exact numbers from the figure, the results
are also given in Table 9.3. Every line corresponds to the dataset under test.
Every column equals a zoom level z and the value in the cell represents the
duration where the zoom level should be used.

Dataset z=18 z=17 z=16 z=15 z=14 z=13 z=12
BER 0 333 1355 2531 2759
BZ 0 264 660 1230 1833
SF 0 210 1311 2324 2460
VIE 0 120 1157 2037 2280
WDC 0 665 1859 2304

Table 9.3.: Best adaptive tiles ranges in real-world datasets.

For the dataset of Berlin for example, Table 9.3 reads as follows. Between
remaining durations of 0 and 332 seconds it is best to use zoom level 17.
From 333 to 1354 seconds larger tiles of zoom levels 16 perform best. Then
up to a duration of 2530 seconds a z of 15 is preferable. For durations be-
tween 2531 and 2758 seconds tile ranges with a zoom level of 14 provide the
fastest computation. For all the larger remaining durations a zoom level of 12
should be used. For the latter ones the whole dataset of Berlin is contained
in approximately 50 tile ranges.

For the following evaluations and the MineT(X) algorithms the adaptive zoom
levels given in Figure 9.3 and Table 9.3 are used.

9.6. Memory Experiments

After all the best loading ranges as well as adaptive tile ranges were fixed,
evaluations regarding the algorithms memory and runtime are carried out. The
figures present the memory that has been used at maximum throughout the
computation. The results for the synthetic networks are given in Figure 9.4.
The x-axis shows the limiting criterion dmax in minutes, while on the y-axis

122

9.6. Memory Experiments

the number of vertices kept in memory (maximal value throughout the entire
isochrone computation) is plotted.

15 30 45 60
0

2

4

6

8

10

dmax[min]

|V
M

M
|
∗

1k

MDijkstra
Mine
MineX
MineR
MineRX
MineT
MineTX
MineRB

(a) Grid

15 30 45 60
0

2

4

6

dmax[min]

|V
M

M
|
∗

1k

MDijkstra
Mine
MineX
MineR
MineRX
MineT
MineTX
MineRB

(b) Spider

Figure 9.4.: Memory consumption in synthetic networks.

MineRB loads the same ranges as MineR(X) in batches. Therefore, no differ-
ence can be seen for memory consumption. For both algorithms a single range
query is sufficient to load everything into memory that is needed for isochrone
computation. This initial loading range caused the algorithm to use a lot of
memory in synthetic networks. MineTX loads a bit less vertices into memory,
especially in the grid network. The algorithms using vertex expiration free
memory early and therefore consume less memory.

For the real-world datasets that contain discrete time edges and are true Mul-
timodal Spatial Networks the memory consumption is given in Figure 9.5.

It becomes obvious that MDijkstra performs the worst, since it loads the whole
network into memory. The algorithms not using vertex expiration start with a
low memory consumption that reaches an upper bound. This bound is caused
by the fact that the entire network needs to be considered on isochrone com-
putation. That also means that within an hour big parts of the dataset are
reachable. There are minimal advantages of Mine over MineR and MineRB,
whereas MineT consumes the most memory except for MDijkstra. MineRB
behaves exactly like MineR also in the Multimodal Spatial Networks. MineRB
reduces the number of database calls, but the loading ranges are exactly the
same, even when using discrete edges. More insight is given for the algo-
rithms with vertex expiration. As can be seen, Mine consumes by far the
least memory. This is what was expected, since Gamper et al. showed that
in terms of memory MineX is optimal [34]. MineRX is somewhere in between
MineX and the algorithms not using vertex expiration. This has been shown
by M. Innerebner and was also expected [51]. The algorithm MineTX, that
has been discussed in Section 5.3 performs great. It uses adaptive zoom levels

123

Chapter 9. Evaluation

15 30 45 60
0

2

4

6

dmax[min]

|V
M

M
|
∗

1k

MDijkstra
Mine
MineX
MineR
MineRX
MineT
MineTX
MineRB

(a) BZ

15 30 45 60
0

50

100

150

200

dmax[min]

|V
M

M
|
∗

1k

MDijkstra
Mine
MineX
MineR
MineRX
MineT
MineTX
MineRB

(b) BER

15 30 45 60
0

20

40

60

80

100

120

dmax[min]

|V
M

M
|
∗

1k

MDijkstra
Mine
MineX
MineR
MineRX
MineT
MineTX
MineRB

(c) VIE

15 30 45 60
0

10

20

30

dmax[min]

|V
M

M
|
∗

1k

MDijkstra
Mine
MineX
MineR
MineRX
MineT
MineTX
MineRB

(d) SF

15 30 45 60
0

10

20

30

40

dmax[min]

|V
M

M
|
∗

1k

MDijkstra
Mine
MineX
MineR
MineRX
MineT
MineTX
MineRB

(e) WDC

Figure 9.5.: Memory consumption on real-world datasets.

and therefore introduces spikes. On every change of the zoom level memory
consumption increases very fast, but this allows to keep the performance high.
This can be best seen in the dataset of San Francisco, where two such spikes
occur for a dmax of 35 and 45 minutes. Depending on the dataset and dmax, it
can be seen that sometimes MineTX and sometimes MineRX performs better,
with a slight favor for MineRX especially in smaller datasets.

124

9.7. Runtime Experiments

9.7. Runtime Experiments

In this section the runtimes of the various algorithms on the test datasets are
given. The algorithms Mine, MineR and MineT (the ones without using vertex
expiration when otherwise possible), are skipped, since on the test system they
are equally fast than the ones with vertex expiration. In the following charts no
difference could be examined for them (the difference is less than one percent
in computation time). This can be explained when looking at the test systems
hardware and the datasets under test, since plenty of memory is available.
Therefore, the computed isochrones are too small to cause a big difference in
calculation time. The results for the synthetic datasets is given in Figure 9.6.
The x-axis corresponds to the maximal duration dmax in minutes, while on
the y-axis the computation time (in seconds) is plotted.

15 30 45 60
0

0.2

0.4

0.6

0.8

1

dmax[min]

ru
nt

im
e

[s
]

MDijkstra
MineX
MineRX
MineTX
MineRB

(a) Grid

15 30 45 60
0

2 ·
10−2

4 ·
10−2

6 ·
10−2

dmax[min]

ru
nt

im
e

[s
]

MDijkstra
MineX
MineRX
MineTX
MineRB

(b) Spider

Figure 9.6.: Computation runtime in synthetic networks.

The MineRX (and MineRB) algorithm performs best in the synthetic net-
works. MineT(X) is able to keep up for grid layouts, but not in spider net-
works. Spider networks are optimal for circular ranges, since with only one
loading operation all the vertices are loaded into memory. MineTX needs to
use at least four tile ranges, since the center of the spider network is exactly
where four tile ranges meet. MineX performs the worst throughout the syn-
thetic networks, while MDijkstra performs bad for small durations dmax, but
delivers the smallest computation times for large dmax.

The computation times for the real-world datasets is given in Figure 9.7.

The runtime of the isochrone computation is different across the various
datasets. For small datasets the best performance is achieved when loading the
whole network into memory and performing network expansion solely there.
Only for small isochrones with a maximal duration of less than ten minutes

125

Chapter 9. Evaluation

15 30 45 60
0

0.2

0.4

0.6

0.8

dmax[min]

ru
nt

im
e

[s
]

MDijkstra
MineX
MineRX
MineTX
MineRB

(a) BZ

15 30 45 60
0

10

20

30

dmax[min]

ru
nt

im
e

[s
]

MDijkstra
MineX
MineRX
MineTX
MineRB

(b) BER

15 30 45 60
0

5

10

15

dmax[min]

ru
nt

im
e

[s
]

MDijkstra
MineX
MineRX
MineTX
MineRB

(c) VIE

15 30 45 60
0

1

2

3

4

5

dmax[min]

ru
nt

im
e

[s
]

MDijkstra
MineX
MineRX
MineTX
MineRB

(d) SF

15 30 45 60
0

2

4

6

dmax[min]

ru
nt

im
e

[s
]

MDijkstra
MineX
MineRX
MineTX
MineRB

(e) WDC

Figure 9.7.: Computation runtimes on real-world datasets.

other approaches perform better. For these very small isochrones MineRX
performs best with MineX and MineTX performing nearly as good. As soon
as the maximal duration dmax is increased, MineTX delivers favourable run-
times. For large isochrones in small datasets using MDijkstra provides the
fastest computation, followed by MineTX that delivers the second best run-

126

9.8. Break-Even Points and Network Independence

times in front of MineRX, MineRB and MineX. A closer look is plotted for
the datasets of San Francsico in Figure 9.8.

15 30 45 60
0

0.5

1

1.5

2

2.5

dmax[min]

ru
nt

im
e

[s
]

MDijkstra
MineX
MineRX
MineTX
MineRB

Figure 9.8.: Detailed computation runtime for the dataset of San Francisco.

It can be observed that MineTX performs better than MineRX with a bigger
difference for maximal durations dmax above 30 minutes. For these durations,
MineTX is able to stay closer to the runtimes of MDijkstra making it favorable
over MineRX. Therefore, when only one algorithm should be used to create
isochrones of arbitrary dmax, MineTX is the algorithm performing best.

9.8. Break-Even Points and Network Independence

For real-world datasets it has been seen that there is a point where MDijkstra
becomes the fastest algorithm although it loads the entire network into mem-
ory. Therefore, a major question regarding loading data from a data source
is, how long the computation stays faster when using a database. This can
be determined by looking at so called break-even points that reflect the point
of intersection in the Figure 9.7 from above. The results for the real-world
datasets is given in Figure 9.9. The x-axis shows the dataset under test, while
on the y-axis the dmax (in seconds) of the break-even point is plotted. Break-
even points with MDijkstra should be as late as possible, therefore high values
in the figure are better.

It can be seen that MineTX performs best, because the intersection point
occurs the latest. The range batching optimization of MineRX (the algorithm
MineRB) does not improve the original algorithm. Depending on the dataset
MineTX performs about five percent better than MineRX (for the dataset of

127

Chapter 9. Evaluation

BER BZ SF VIE WDC
0

500

1000

1500

2000

2500
d

m
a

x
[s

]
MineX
MineRX
MineTX
MineRB

Figure 9.9.: Break-even points on real-world datasets.

Berlin) to a little more than twenty percent better (for the datasets of San
Francisco and Vienna).

Since the results vary across the modeled cities the next evaluation checks the
independence of the algorithms to the size of the datasets. This is done by
computing a reachable area holding exactly 3000 vertices. Fixing the result
size and not the maximal duration as done in Section 9.6 and 9.7 allows a
comparison across the datasets. The result is plotted in Figure 9.10. The
x-axis lists the dataset under test, while on the y-axis the computation time
(in seconds) to create a reachable area including 3000 vertices is given. The
computation time should not only be low for an algorithm, it should also be
of the same size across the different datasets to indicate scalability.

BER BZ SF VIE WDC
0

500

1000

1500

2000

ru
nt

im
e

[s
]

MDijkstra
MineX
MineRX
MineTX
MineRB

Figure 9.10.: Network independence of the algorithms on real-world datasets.

128

9.9. Elevation aware performance

As expected MDijkstra is highly dependent on the network size. In Berlin and
Vienna (the two largest datasets) its runtime is high. For small datasets, such
as Bolzano, the runtime is very low. The cause for this behavior is the initial
loading of the entire network. In contrast to the in-memory computation the
approaches using incremental network expansion are not as dependent on the
datasets size. MineX shows only minimal variations over all datasets. MineTX
also stays constant across the datasets with slight variation in the dataset of
Washington, D.C. (WDC). The runtimes of MineRX and MineRB also vary
across the tested datasets, although in general runtimes are less than the ones
of MineX. Since MineTX delivers the best runtimes (except for the smallest
dataset representing Bolzano) and variation across the datasets is low, its
overall performance outperforms previous approaches.

9.9. Elevation aware performance

The evaluations in the previous sections did not include elevation awareness
to be comparable with previously carried out research. Differences in compu-
tation runtime or memory consumption for certain maximal durations dmax

would occur when using elevation aware computing, but that would not nec-
essarily indicate a change in performance. The reason for this is that elevation
awareness also changes the reachable area. It is expected that performance
increases if big parts of the reachable area include inclines for the same dmax.
For declines the reachable area would get bigger so the performance would
look bad when compared to the same dmax when not using elevation informa-
tion. Also when using isochrones of the same size (referring to the number
of edges and vertices included in the reachable area), like it has been done
during evaluating the network independence of the algorithms in the previous
section, comparability would not be guaranteed. The reason here is that al-
though the size is the same, the isochrone would still be different. It could
be that less continuous space and time edges are included that got replaced
with discrete edges. Therefore more queries to schedules would occur causing
problems regarding comparability.

Therefore, another approach was taken to benchmark elevation aware compu-
tation. All edges within a dataset are loaded that then are used to compute
the reachable travel speeds on it. Then it is recorded how long the compu-
tation (with and without elevation) took per edge. To produce meaningful
results all edges of the Bolzano datasets (16476 edges) were iterated multiple
times (500.000 times). Then the time needed for one edge was calculated from
the overall runtime. The results are given in Table 9.4.

129

Chapter 9. Evaluation

Mode Time per edge
Fixed (− elevation) 5.8 nanosec
Simple (− elevation) 11.06 nanosec
Cycling (− elevation) 15.55 nanosec
Cycling (+ elevation; − precomputation) 8216.96 nanosec
Cycling (+ elevation; + precomputation) 22.62 nanosec
Walking (− elevation) 10.89 nanosec
Walking (+ elevation; − precomputation) 8233.54 nanosec
Walking (+ elevation; + precomputation) 87.94 nanosec
User profile 22.46 nanosec

Table 9.4.: Runtime for elevation aware computation

It can be seen that the two modes “Cycling (+ elevation; − precomputation)”
and “Walking (+ elevation; − precomputation)” need much more time than
the other modes. These two modes compute the achievable speed on the edge
by using all the hypervertices of an edge. The length for all edge segments
is computed together with the difference in elevation. From these two values
the speed on each segment is computed. The speed values of all segments are
then averaged resulting in the achievable speed on the edge. The determi-
nation of the edge segments length is computational intense compared to the
other modes, since spatial reference systems might have to be converted and
the computation itself computes the orthodromic distance. Therefore, the pre-
computation explained in Section 6.3 that used average incline, average decline
and the length on which the edge inclines (in percentage) is applied. With the
help of these three values the same modes perform much better (around 100
times faster), while still regarding elevation. Without elevation awareness the
computation for the walking mode is around eight times faster. It can also be
seen that using user profiles or taking elevation into account when traveling
by bike perform equally fast at around 22 nanoseconds for a single edge. Not
regarding elevation takes about ten nanoseconds per edge to handle the max-
imum speed allowed on that edge together with the type and surface of the
edge. For bicycles it takes slightly more time (15 nanoseconds), since more
speed factors for different surfaces are known for that mode of traveling. Not
taking any weights of the graphs edge into account is of course the fastest, but
can only be applied when computing isodistances, not isochrones (isochrones
always regard the maximum speed allowed).

If the results are seen in context with the sizes of the datasets, then it becomes
clear that elevation awareness does not influence performance of the isochrone
computation much. Even the largest dataset under test (Berlin) contains only
716396 edges. Even if it had one million edges, and a reachable area would be
computed that covers the whole dataset, then the elevation would add a total

130

9.9. Elevation aware performance

of 88msec when using the mode “Walking (+ elevation; + precomputation)”.
In comparison to the overall runtime of the isochrone creation (that is around
ten seconds for an isochrone with a maximal duration of one hour that still
does not cover the whole dataset) this is below one percent.

131

CHAPTER 10

Conclusion

10.1. Summary

In this thesis improvements for isochrones in Multimodal Spatial Networks
were made. On the one hand new algorithms capable of creating isochrones in
such networks were introduced that outperform previous approaches. On the
other hand enhancements to the field of application of isochrones were made.
Those include the definition and calculation of averaged and time-invariant
isochrones, as well as elevation aware computation. Re-visiting and improving
data structures used by existing algorithms optimize all calculations. Memo-
ization was introduced to the field of isochrones in Multimodal Spatial Net-
works, which further decreased computation time whenever previously known
results are available.

With the establishment of a generalized dataset creation workflow the prob-
lem of lacking comparability across different methods and throughout various
geographical locations was tackled. This and the newly developed application
“IsoMap” ease the computation of isodistances and isochrones in unimodal
and multimodal networks even for people not familiar with the topic. This
application visually presents the calculation results in an appropriate way
that can be interactively explored and analyzed. The dataset creation tool

Chapter 10. Conclusion

“osmPti2mmds” allows the creation of the underlying datasets and is able to
include information from various external data sources, e.g. to include infor-
mation about elevation and schedules. Various settings that are of importance
throughout the computation can be modified, so that further insights in the
topic of isochrones in Multimodal Spatial Networks can be gained. For the
elevation awareness various methods were introduced that target for different
modalities. Besides walking also traveling by bicycle as well as methods re-
specting the surface and type of a street were implemented. Subsequently, a
way to tailor isochrones to individuals with the help of so called “user profiles”
was presented.

An empirical evaluation shows the memory consumption, the computation
runtimes as well as the network independence of the algorithms proposed in
this thesis. It outlines that batch loading of circular ranges does not lead to an
improvement. Although memory consumption stays the same and less calls to
the data source are needed, the problem of calculating (possibly large) regions
of the network more than once adds to the calculations runtime. In contrast,
using tile regions for loading the data from an underlying data source is of ben-
efit for all the real-world datasets when compared to the previously available
algorithms using incremental network expansion. This was not only shown in
a publication, but was further improved with adaptive zooming. After car-
rying out a precomputation step that determines the optimal adaptive zoom
ranges, the proposed method is able to compute large results in large networks
within a feasible amount if time. In addition, most of the disadvantages of the
previous approaches were addressed by a newly developed algorithm that was
named “MineTX”. As a result, MineTX delivers the best break-even points
and better network independence than MineRX. When using the new algo-
rithm computations times are low for isochrones with small maximal duration
dmax and stay closer to the runtime of loading the whole network into memory
(MDijkstra) for large isochrones.

All the datasets and the source-code of the algorithms, enhancements and
tools that were created throughout this thesis are freely available under an
open-source license. More information about this is available on the website
https://dbis-isochrone.uibk.ac.at [60] as well as on https://git.uibk.

ac.at/dbis-isochrone [61].

10.2. Future Research Directions

Open issues remain that have not been addressed throughout the thesis. The
results of the elevation aware computations could be further improved by uti-

134

https://dbis-isochrone.uibk.ac.at
https://git.uibk.ac.at/dbis-isochrone
https://git.uibk.ac.at/dbis-isochrone

10.2. Future Research Directions

lizing more accurate data. The SRTM data that is used provides a resolution
of 30 x 30 meters. Local datasets and newer approaches like OpenDEM [100]
provide higher resolutions and would allow to create isochrones that model
the real-world conditions better. Such approaches have not yet been imple-
mented, since global coverage is missing and therefore comparisons across the
globe would not be possible. If comparability is neglectable and accuracy is
the major concern, using such DEMs could be beneficial.

The datasets that were used for the empirical evaluation were created with the
help of boundary polygons that represent cities or specific regions. The cre-
ated Multimodal Spatial Networks allow for isochrone computation, but only
within one of these regions. Therefore, seamless isochrone computation across
different datasets could be of interest. Not only computing across datasets,
but also applying incremental updates to the datasets itself could ease data
handling. This would also allow to include real-time data like information
about traffic jams or delayed buses that arrive behind schedule. Although
this includes handling of additional data sources, such as GTFS Realtime, it
could add valuable information especially when traveling by car or when using
public transport.

The incremental computation of isochrones that was introduced in Section 5.4
could be further extended. At the moment changing maximal durations use
memoization. If the principle is applied to other parameters, like traveling
speed or starting date and time, the calculation runtime of isochrones in Mul-
timodal Spatial Networks could possibly be reduced even more.

Future algorithms able to create multimodal isochrones could focus on adopt-
ing other approaches from the field of routing, including Contraction Hierar-
chies (CH). Utilizing current hardware, like Solid-State-Drives, fast graphic
cards or even accelerated processing units (APUs) that enable zero-copy tech-
niques between the central processing unit (CPU) and the graphics processing
unit (GPU) [89] offer the potential to decrease computation times. Perfor-
mance improvements could address the performance of creating the line around
the areas computed with the algorithm discussed throughout this thesis. This
would speed-up visualizations within IsoMap and would also allow fast com-
putation of averaged and time-invariant isochrones that rely on the geometric
representation of the results rather than on the graph’s edges and vertices.

The creation of datasets and user profiles is done with the help of command
line scripts. Building sophisticated graphical user interfaces could ease these
tasks and would allow usage even for people not that familiar with computer
systems.

135

APPENDIX A

Appendix

A.1. Way Type Classes

The following Table A.1 lists the rules that are applied to classify edges within
road network graph into way type classes in order to create and use profiles
explained in Section 6.4. The rules themselves have been defined together with
M. Malfertheiner [70].

ID Class Rule

0 MOTORWAY highway ∈ {motorway,
motorway_link, trunk, trunk_link}

1 ROAD highway ∈ {primary,
primary_link, secondary,
secondary_link}

2 TERTIARY_ROAD highway ∈ {tertiary,
tertiary_link}

3 UNCLASSIFIED_PAVED highway ∈ {unclassified} ∧
¬UNCLASSIFIED_UNPAV ED

4 UNCLASSIFIED_
UNPAVED

highway ∈ {unclassified} ∧
(surface ∈ unpaved_surface_set ∨
(tracktype 6= null ∧ tracktype 6=
grade1))

Appendix A. Appendix

5 SMALL_WAY_PAVED highway ∈ {residential,
living_street, service} ∧
¬SMALL_WAY _UNPAV ED

6 SMALL_WAY_UNPAVED highway ∈ {residential,
living_street, service} ∧ (surface ∈
unpaved_surface_set ∨ (tracktype 6=
null ∧ tracktype 6= grade1))

7 TRACK_EASY highway ∈ {track} ∧
¬(TRACK_MIDDLE ∨
TRACK_HARD)

8 TRACK_MIDDLE highway ∈ {track} ∧
¬TRACK_HARD ∧ tracktype ∈
{grade2, grade3} ∧ surface /∈
paved_surface_set

9 TRACK_HARD highway ∈ {track} ∧ tracktype ∈
{grade4, grade5} ∧ surface /∈
paved_surface_set

10 PATH_EASY highway ∈ {path} ∧
¬(PATH_MIDDLE ∨
PATH_HARD)

11 PATH_MIDDLE highway ∈ {path} ∧
¬PATH_HARD ∧ (smoothness ∈
{bad, very_bad} ∨ sac_scale ∈
{hiking} ∨ mtb : scale ∈ {1, 2, 3} ∧
surface /∈ paved_surface_se ∧
¬bicycle_intended)

12 PATH_HARD highway ∈ {path} ∧ (smoothness ∈
{horrible, very_horrible} ∨
sac_scale ∈
{demanding_mountain_hiking,
mountain_hiking} ∨ mtb : scale ∈
{4, 5}

13 CYCLEWAY (type = bicycle ∧ network ∈
{icn, ncn, rcn, lcn}) ∨ highway =
cycleway ∨ bicycle = designated

14 MTB_CYCLEWAY type = mtb ∨ (bicycle = designated ∧
surface /∈ paved_surface_set)

15 PUSHING_SECTION highway ∈ {footway,
pedestrian, steps} ∨ surface = ice

Table A.1.: Rules to classify edges into way type classes

138

List of Algorithms

1. Algorithm MDijkstra(q, dmax, s, t, N) 43

2. Algorithm Mine(q, dmax, s, t, N) 47

3. Algorithm MineX(q, dmax, s, t, N) 49

4. Algorithm MineRX(q, dmax, s, t, N) 52

5. Algorithm MineRB(q, dmax, s, t, N) 63

6. Algorithm MineTX(q, dmax, s, t, z, N) 67

7. Algorithm AveragedIsochrone(I[]) 79

8. Algorithm TimeInvariantIsochrone(I[]) 81

9. Algorithm DIN 33466(v1, v2) . 86

List of Figures

1.1. 2000 meter isodistance. 3
1.2. Unimodal 10min isochrone using a travel speed of 20km/h. . . 3
1.3. Multimodal 10min isochrone using a travel speed of 20km/h. . 4

3.1. Sample graph. 20
3.2. Directed graph. 21
3.3. Directed graph containing multiple edges. 22
3.4. Directed graph containing multiple edges and loops. 22
3.5. Weighted multidigraph. 23
3.6. Hypertournament with loops and multiple edges. 24
3.7. Spatial road network modeling the city center of Innsbruck,

Austria. 26
3.8. Spatial Network containing two modalities. 28
3.9. Path in a network. 33
3.10. Reachable area (dmax=5min, s=4m/s and t = 06:01:00) 36
3.11. Multimodal Spatial Network modeling the city center of Inns-

bruck. 37

4.1. Expiration in synthetic networks. 50
(a). LRU . 50
(b). Grid . 50
(c). Spider . 50

4.2. Expiration in real-world networks. 51
(a). Bolzano . 51
(b). Innsbruck . 51

4.3. MineR(X) query ranges in Innsbruck (travelspeed = 4.5km/h
and dmax = 5min). 54

List of Figures

(a). Unimodal range loading 54
(b). Multimodal range loading 54

4.4. Precomputation of radii for vertex number densities. 56

5.1. Postboned range queries batch loaded in the city of Innsbruck. 62
5.2. Tile pyramid from level 0 to l. 66
5.3. MineT(X) non-adaptive tile range size compared to usage of

adaptive zoom levels in the city of Washington, D.C. 68
(a). Non-adaptive loading of tile ranges 68
(b). Adaptive loading of tile ranges 68

6.1. Possible starting positions in Innsbruck for an averaged
isochrone computation using four single isochrones. 78

6.2. Averaged isochrone computation result. 80
(a). Averaged isochrone . 80
(b). Visualization using transparency 80

6.3. Time-invariant isochrone. 83
(a). Visualization . 83
(b). Zoomed detail . 83

6.4. Raw profile for a cyclist on a small paved way. 91

7.1. Dataset creation workflow. 94
7.2. Spatial routable road network modeling the city center of Inns-

bruck. 97
7.3. Network graph weaving. 100

(a). Disjoint graphs . 100
(b). Vertex projection . 100
(c). Linking vertex . 100
(d). Weaved networks . 100

8.1. IsoMap showing all available overlays. 109
8.2. Vertex expiration mode in IsoMap. 111
8.3. IsoMap showing information about transport systems. 111
8.4. Spatial analysis carried out in IsoMap. 112
8.5. Averaged isochrone in IsoMap. 113
8.6. SpiderWebGraph in IsoMap on Piazza Walther, Bolzano, Italy. 114

9.1. Comparing expansion queue data structures. 118
(a). BER . 118
(b). VIE . 118
(c). SF . 118
(d). WDC . 118

9.2. MineR range limitation performance. 120
(a). BZ . 120
(b). BER . 120

142

List of Figures

(c). VIE . 120
(d). SF . 120
(e). WDC . 120

9.3. Determining adaptive tile ranges in real-world datasets. 121
(a). BZ . 121
(b). BER . 121
(c). VIE . 121
(d). SF . 121
(e). WDC . 121

9.4. Memory consumption in synthetic networks. 123
(a). Grid . 123
(b). Spider . 123

9.5. Memory consumption on real-world datasets. 124
(a). BZ . 124
(b). BER . 124
(c). VIE . 124
(d). SF . 124
(e). WDC . 124

9.6. Computation runtime in synthetic networks. 125
(a). Grid . 125
(b). Spider . 125

9.7. Computation runtimes on real-world datasets. 126
(a). BZ . 126
(b). BER . 126
(c). VIE . 126
(d). SF . 126
(e). WDC . 126

9.8. Detailed computation runtime for the dataset of San Francisco. 127
9.9. Break-even points on real-world datasets. 128
9.10. Network independence of the algorithms on real-world datasets. 128

143

List of Tables

3.1. Example of a Schedule. 28

4.1. Precomputed vertex number densities. 56

5.1. Incremental calculation instructions 73

6.1. Raw profile matrix . 89

9.1. Statistics about the synthetic datasets 116
9.2. Statistics about the real-world datasets 117
9.3. Best adaptive tiles ranges in real-world datasets. 122
9.4. Runtime for elevation aware computation 130

A.1. Rules to classify edges into way type classes 138

Bibliography

[1] A. M. Andrew. “Another Efficient Algorithm for Convex Hulls in Two
Dimensions”. In: Information Processing Letters 9.5 (1979), pp. 216–
219.

[2] A. Antrim, S. J. Barbeau, et al. “The Many Uses of GTFS Data
– Opening the Door to Transit and Multimodal Applications”. In:
Location-Aware Information Systems Laboratory at the University of
South Florida (2013), p. 4.

[3] C. Arias Muñoz, S. Corti, M. Molinari, D. Oxoli, and G. Prestifilippo.
“City Focus: A web-based interactive 2D and 3D GIS application to find
the best place in a city, using open data and open source software”. In:
PeerJ Preprints 4 (2016).

[4] Azavea. GeoTrellis Transit. url: http://transit.geotrellis.com

(visited on 07/2017).

[5] J. Baez. Network Theory. url: http://math.ucr.edu/home/baez/

econ.pdf (visited on 08/2017).

[6] V. K. Balakrishnan. Graph Theory. McGraw-Hill, 1997.

[7] M. Barclay and A. Galton. “Comparison of region approximation tech-
niques based on Delaunay Triangulations and Voronoi Diagrams”. In:
Computers, Environment and Urban Systems 32.4 (2008), pp. 261–267.

[8] G. V. Batz, D. Delling, P. Sanders, and C. Vetter. “Time-dependent
Contraction Hierarchies”. In: Proceedings of 11th Workshop on Algo-
rithm Engineering and Experiments (ALENEX). SIAM, 2009, pp. 97–
105.

http://transit.geotrellis.com
http://math.ucr.edu/home/baez/econ.pdf
http://math.ucr.edu/home/baez/econ.pdf

Bibliography

[9] V. Bauer, J. Gamper, R. Loperfido, S. Profanter, S. Putzer, and I.
Timko. “Computing Isochrones in Multi-Modal, Schedule-Based Trans-
port Networks”. In: Proceedings of the 16th annual ACM International
Symposium on Advances in Geographic Information Systems (SIGSPA-
TIAL). GIS ’08. ACM. Irvine, California, 2008, 78:1–78:2.

[10] M. Baum, V. Buchhold, J. Dibbelt, and D. Wagner. “Fast Exact Com-
putation of Isochrones in Road Networks”. In: Proceedings of the 15th
International Symposium on Experimental Algorithms (SEA). Springer,
2016, pp. 17–32.

[11] R. Bierbauer. “Comparing routing implementations in various database
systems”. Master Thesis. University of Innsbruck, Sept. 2016.

[12] N. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory, 1736-1936.
Oxford University Press, 1976.

[13] Bing Maps Isochrone Demo. url: http://bmlabs.azurewebsites.

net/v8-Isochrone (visited on 07/2017).

[14] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.
Macmillan Press, 1976.

[15] M. A. Brovelli, M. Minghini, M. Molinari, and P. Mooney. “Towards
an Automated Comparison of OpenStreetMap with Authoritative Road
Datasets”. In: Transactions in GIS (2016).

[16] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, G. Mai, and C. Long.
“Efficient Algorithms for Optimal Location Queries in Road Networks”.
In: Proceedings of the ACM International Conference on Management
of Data (SIGMOD). ACM. 2014, pp. 123–134.

[17] Conveyal. Conveyal Analyst. url: http://conveyal.com/projects/

analyst (visited on 07/2017).

[18] Conveyal. Conveyal Analyst on Github. url: https://github.com/

conveyal/analyst-server (visited on 07/2017).

[19] T. H. Cormen. Introduction to Algorithms. MIT press, 2009.

[20] Crunchy Bagel. Transitfeeds.com. url: https://transitfeeds.com

(visited on 10/2017).

[21] DB Vertrieb GmbH. Umkreissuchder der Deutschen Bahn. url: https:

//www.bahn.de/regional/view/erlebnis/umkreissuche.shtml

(visited on 07/2017).

[22] D. Delling. “Time-Dependent SHARC-Routing”. In: Algorithmica 60.1
(2011), pp. 60–94.

[23] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”.
In: Numerische Mathematik 1.1 (1959), pp. 269–271.

148

http://bmlabs.azurewebsites.net/v8-Isochrone
http://bmlabs.azurewebsites.net/v8-Isochrone
http://conveyal.com/projects/analyst
http://conveyal.com/projects/analyst
https://github.com/conveyal/analyst-server
https://github.com/conveyal/analyst-server
https://transitfeeds.com
https://www.bahn.de/regional/view/erlebnis/umkreissuche.shtml
https://www.bahn.de/regional/view/erlebnis/umkreissuche.shtml

Bibliography

[24] D. P. Doane and L. E. Seward. “Measuring Skewness: A Forgotten
Statistic”. In: Journal of Statistics Education 19.2 (2011), pp. 1–18.

[25] Y. Du, D. Zhang, and T. Xia. “The Optimal-Location Query”. In: Pro-
ceedings of the 9th International Symposium on Advances in Spatial
and Temporal Databases (SSTD). Vol. 2005. Springer. 2005, pp. 163–
180.

[26] M. Duckham, L. Kulik, M. Worboys, and A. Galton. “Efficient gener-
ation of simple polygons for characterizing the shape of a set of points
in the plane”. In: Pattern Recognition 41.10 (2008), pp. 3224–3236.

[27] D. Dzafic, S. Klug, D. Franke, and S. Kowalewski. “Routing über
Flächen mit SpiderWebGraph”. In: 1 (2015), pp. 516–525.

[28] H. Edelsbrunner. Weighted Alpha Shapes. University of Illinois at
Urbana-Champaign, Department of Computer Science, 1992.

[29] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. “On the Shape of a Set
of Points in the Plane”. In: IEEE Transactions on information theory
29.4 (1983), pp. 551–559.

[30] Factbook, CIA. The world factbook. 2017. url: https://www.cia%

20gov / library / publications / the - world - factbook (visited on
10/2017).

[31] P. Frankl. “What must be contained in every oriented k-uniform hy-
pergraph”. In: Discrete Mathematics 62.3 (1986), pp. 311–313.

[32] M. L. Fredman and R. E. Tarjan. “Fibonacci Heaps and their Uses in
Improved Network Optimization Algorithms”. In: Journal of the ACM
(JACM) 34.3 (1987), pp. 596–615.

[33] J. Gamper, M. Böhlen, W. Cometti, and M. Innerebner. “Defining
Isochrones in Multimodal Spatial Networks”. In: Proceedings of the
20th ACM International Conference on Information and Knowledge
Management (CIKM). ACM. 2011, pp. 2381–2384.

[34] J. Gamper, M. Böhlen, and M. Innerebner. “Scalable Computation of
Isochrones with Network Expiration”. In: Proceedings of 24th Interna-
tional Conference on Scientific and Statistical Database Management
(SSDBM). ACM. Springer, 2012, pp. 526–543.

[35] R. Garcia, J. P. de Castro, E. Verdu, M. J. Verdu, and L. M. Regueras.
“Web Map Tile Services for Spatial Data Infrastructures: Management
and Optimization”. In: Cartography – A Tool for Spatial Analysis. In-
Tech, 2012.

[36] Geofabrik GmbH. Geofabrik. url: https://www.geofabrik.de (vis-
ited on 10/2017).

149

https://www.cia%20gov/library/publications/the-world-factbook
https://www.cia%20gov/library/publications/the-world-factbook
https://www.geofabrik.de

Bibliography

[37] Geomatics and Earth Observation laboratory (GEOlab) of Politecnico
di Milano. CityFocus. url: http://muvias.eoapps.eu/cityfocus

(visited on 07/2017).

[38] J.-F. Girres and G. Touya. “Quality Assessment of the French Open-
StreetMap Dataset”. In: Transactions in GIS 14.4 (2010), pp. 435–459.

[39] M. F. Goodchild. “Citizens as Sensors: The World of Volunteered Ge-
ography”. In: GeoJournal 69.4 (2007), pp. 211–221.

[40] Google. Google Inside Search: The Knowledge Graph. url: https :

/ /www. google. com/intl/bn/ insidesearch/ features/search /

knowledge.html (visited on 10/2017).

[41] R. L. Graham. “An Efficient Algorithm for Determining the Convex
Hull of a Finite Planar Set”. In: Information Processing Letters 1.4
(1972), pp. 132–133.

[42] A. Graser. Feb. 2011. url: https://anitagraser.com/2011/02/09/

creating-catchment-areas-with-pgrouting-and-qgis (visited on
07/2017).

[43] A. Graser. July 2013. url: https://anitagraser.com/2013/07/

07/public- transport- isochrones- with- pgrouting/ (visited on
07/2017).

[44] HaCon Ingenieurgesellschaft mbH. HaCon Umkreissuche. url: http://

www.hacon.de/unternehmen/presse/pressearchiv/pressearchiv-

2012/deutsche- bahn- setzt- auf- die- umkreissuche- von- hacon

(visited on 07/2017).

[45] J. Han and C. Moraga. “The Influence of the Sigmoid Function Param-
eters on the Speed of Backpropagation Learning”. In: Proceedings of
the International Workshop on Artificial Neural Networks (IWANN):
From Natural to Artificial Neural Computation, Malaga-Torremolinos,
Spain, June 7-9. Springer-Verlag. 1995, pp. 195–201.

[46] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths”. In: IEEE Transac-
tions on Systems Science and Cybernetics 4.2 (July 1968), pp. 100–
107.

[47] L. S. Heath and A. A. Sioson. “Multimodal Networks: Structure and
Operations”. In: IEEE/ACM Transactions on Computational Biology
and Bioinformatics 6.2 (Apr. 2009), pp. 321–332.

[48] O. Huisman and A. d. B. Rolf. “Principles of geographic information
systems”. In: ().

[49] iGeolise. TravelTime Platform. url: http : / / www .

traveltimeplatform.com (visited on 07/2017).

150

http://muvias.eoapps.eu/cityfocus
https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html
https://anitagraser.com/2011/02/09/creating-catchment-areas-with-pgrouting-and-qgis
https://anitagraser.com/2011/02/09/creating-catchment-areas-with-pgrouting-and-qgis
https://anitagraser.com/2013/07/07/public-transport-isochrones-with-pgrouting/
https://anitagraser.com/2013/07/07/public-transport-isochrones-with-pgrouting/
http://www.hacon.de/unternehmen/presse/pressearchiv/pressearchiv-2012/deutsche-bahn-setzt-auf-die-umkreissuche-von-hacon
http://www.hacon.de/unternehmen/presse/pressearchiv/pressearchiv-2012/deutsche-bahn-setzt-auf-die-umkreissuche-von-hacon
http://www.hacon.de/unternehmen/presse/pressearchiv/pressearchiv-2012/deutsche-bahn-setzt-auf-die-umkreissuche-von-hacon
http://www.traveltimeplatform.com
http://www.traveltimeplatform.com

Bibliography

[50] iGeolise on Github. url: https://github.com/igeolise (visited on
07/2017).

[51] M. Innerebner. “Isochrones in Multimodal Spatial Networks”. PhD
Thesis. Free University of Bozen-Bolzano, 2013.

[52] M. Innerebner, M. Böhlen, and J. Gamper. “ISOGA: A System for
Geographical Reachability Analysis”. In: Proceedings of the 12th In-
ternational Symposium on Web and Wireless Geographical Information
Systems (W2GIS), Banff, AB, Canada, April 4-5. Berlin, Heidelberg:
Springer, 2013, pp. 180–189.

[53] R. A. Jarvis. “On the Identification of the Convex Hull of a Finite Set
of Points in the Plane”. In: Information Processing Letters 2.1 (1973),
pp. 18–21.

[54] R. E. Kalman et al. “A New Approach to Linear Filtering and Predic-
tion Problems”. In: Journal of basic Engineering 82.1 (1960), pp. 35–
45.

[55] S. Kaufmann. “Opening Public Transit Data in Germany”. Master The-
sis. University of Ulm, 2014.

[56] O. Kounadi. “Assessing the Quality of OpenStreetMap Data”. Master
Thesis. University College of London, 2009.

[57] N. Krismer. “INNsochrone”. In: (2015).

[58] N. Krismer. “Interaktive Karten und HTTP/2”. In: (July 2016).

[59] N. Krismer. Datasets modeling Multimodal Spatial Networks. url:
https : / / dbis - owncloud . uibk . ac . at / index . php / s /

kgjm3CItQJ6P374 (visited on 10/2017).

[60] N. Krismer. DBIS-Isochrone Homepage and the IsoMap application.
url: https://dbis-isochrone.uibk.ac.at (visited on 10/2017).

[61] N. Krismer. Version Control System for Isochrone Source Code. url:
https://git.uibk.ac.at/dbis-isochrone (visited on 09/2017).

[62] N. Krismer, J. Gamper, and G. Specht. “Isochrones in Multimodal
Spatial Networks”. In: AGIT Postersession (July 2014).

[63] N. Krismer, J. Gamper, and G. Specht. “Reachability Calculation
based on Average Isochrones Regarding Time Distribution”. In: AGIT
Postersession (July 2015).

[64] N. Krismer, D. Silbernagl, J. Gamper, and G. Specht. “osmPti2mmds
- Erstellung von multimodalen Datensets aus OpenStreetMap und
ÖPNV-Informationen”. In: AGIT Journal 2 (2016), pp. 185–190.

151

https://github.com/igeolise
https://dbis-owncloud.uibk.ac.at/index.php/s/kgjm3CItQJ6P374
https://dbis-owncloud.uibk.ac.at/index.php/s/kgjm3CItQJ6P374
https://dbis-isochrone.uibk.ac.at
https://git.uibk.ac.at/dbis-isochrone

Bibliography

[65] N. Krismer, D. Silbernagl, J. Gamper, and G. Specht. “Computing
Isochrones in Multimodal Spatial Networks Using Tile Regions”. In:
Proceedings of the 29th International Conference on Scientific and Sta-
tistical Database Management (SSDBM), Chicago, Illinois, USA, June
27 - 29. ACM, 2017, 33:1–33:6.

[66] N. Krismer, D. Silbernagl, M. Malfertheiner, and G. Specht. “Elevation
Enabled Bicycle Router Supporting User-Profiles”. In: Proceedings of
the 28th GI-Workshop Grundlagen von Datenbanken (GvDB), Nörten
Hardenberg, Germany, May 24 - 27. 2016, pp. 74–79.

[67] N. Krismer, G. Specht, and J. Gamper. “Incremental Calculation
of Isochrones Regarding Duration”. In: Proceedings of the 26th GI-
Workshop Grundlagen von Datenbanken (GvDB), Bozen-Bolzano,
Italy, October 21-24. 2014, pp. 41–46.

[68] K-SOL S.r.l. iso4app. url: https://www.iso4app.net (visited on
07/2017).

[69] Z. Lin and Y. Li. “An Efficient Algorithm for Intersection, Union and
Difference between Two Polygons”. In: Proceedings of the International
Conference on Computational Intelligence and Software Engineering
(CISE). IEEE. 2009, pp. 1–4.

[70] M. Malfertheiner. “feveR - A prototypical implementation of a pro-
file and elevation aware bicycle router”. Master Thesis. University of
Innsbruck, June 2016.

[71] Mapbox. Mapbox data. url: https : / / www . mapbox . com / data -

platform/country/ (visited on 10/2017).

[72] Mapzen. Transit.land. url: https : / / transit . land (visited on
10/2017).

[73] S. Marciuska and J. Gamper. “Determining Objects within Isochrones
in Spatial Network Databases”. In: East European Conference on Ad-
vances in Databases and Information Systems (ADBIS). Springer.
2010, pp. 392–405.

[74] J. Masó, K. Pomakis, and N. Julià. Web Map Tile Service Implementa-
tion Standard. Tech. rep. OGC 07-057r7. Open Geospatial Consortium,
2010.

[75] B. McHugh. “Pioneering Open Data Standards: The GTFS Story”. In:
Beyond Transparency: Open Data and the Future of Civic Innovation
(2013), pp. 125–135.

[76] K. Mehlhorn and P. Sanders. Algorithms and Data Structures: The
Basic Toolbox. Springer Science & Business Media, 2008.

[77] M. Melkemi and M. Djebali. “Computing the Shape of a Planar Points
Set”. In: Pattern Recognition 33.9 (2000), pp. 1423–1436.

152

https://www.iso4app.net
https://www.mapbox.com/data-platform/country/
https://www.mapbox.com/data-platform/country/
https://transit.land

Bibliography

[78] D. Michie. “Memo Functions and Machine Learning”. In: Nature
218.5136 (1968), pp. 19–22.

[79] C. Moeller. Osm2po. url: https://osm2po.de/ (visited on 10/2010).

[80] P. Mooney, P. Corcoran, and A. C. Winstanley. “Towards Quality Met-
rics for OpenStreetMap”. In: Proceedings of the 18th annual ACM In-
ternational Symposium on Advances in Geographic Information Sys-
tems (SIGSPATIAL). ACM. 2010, pp. 514–517.

[81] A. Moreira and M. Y. Santos. “Concave Hull: A K-Nearest Neighbours
Approach for the Computation of the Region Occupied by a Set of
Points”. In: Proceedings of the 2nd International Conference on Com-
puter Graphics Theory and Applications (GRAPP), Barcelona, Spain,
8-11 March, 2007. Institute for Systems, Technologies of Information,
Control, and Communication(INSTICC) Press, 2007.

[82] Motion Intelligence. Route360. url: https://www.route360.net (vis-
ited on 07/2017).

[83] MySociety. Mapumental. url: https://mapumental.com (visited on
07/2017).

[84] Naturtrip GmbH. Naturtrip.org. url: https://naturtrip.org (vis-
ited on 07/2017).

[85] P. Neis. “Location Based Services mit OpenStreetMap Daten”. Master
Thesis. Fachhochschule Mainz, 2008.

[86] P. Neis and D. Zielstra. “Recent Developments and Future Trends
in Volunteered Geographic Information Research: The Case of Open-
StreetMap”. In: Future Internet 1 (2014), pp. 76–106.

[87] P. Neis and A. Zipf. “OpenRouteService.org is three times “Open”:
Combining OpenSource, OpenLS and OpenStreetMaps”. In: Proceed-
ings of the GIS Research UK 16th Annual Conference (GISRUK 08),
Manchester. 2008.

[88] M. Neteler, M. H. Bowman, M. Landa, and M. Metz. “GRASS GIS:
a multi-purpose Open Source GIS”. In: Environmental Modelling &
Software 31 (2012), pp. 124–130.

[89] K. Nilakant and E. Yoneki. “On the Efficacy of APUs for Heteroge-
neous Graph Computation”. In: Proceedings of the 4th Workshop on
Systems for Future Multicore Architectures (SFMA), Amsterdam, The
Netherlands, April 13th. 2014.

[90] J. Nishimura. “The connectivity of graphs of graphs with self-loops and
a given degree sequence”. In: arXiv preprint arXiv:1701.04888 (2017).

[91] Open Geospatial Consortium (OGC). OpenGIS Simple Features Im-
plementation Specification for SQL, Revision 1.1. url: http://www.

opengeospatial.org/standards/sfs (visited on 09/2017).

153

https://osm2po.de/
https://www.route360.net
https://mapumental.com
https://naturtrip.org
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs

Bibliography

[92] Open Source Geospatial Foundation (OSGeo). Workshop on PostGIS -
Section 8: Spatial Indexing. url: http://revenant.ca/www/postgis/

workshop/indexing.html (visited on 09/2017).

[93] OpenStreetMap contributors. Isochrone - OpenStreetMap Wiki. url:
http : / / wiki . openstreetmap . org / wiki / Isochrone (visited on
07/2017).

[94] OpenStreetMap contributors. Slippy map tilenames - OpenStreetMap
Wiki. url: https://wiki.openstreetmap.org/wiki/Slippy%5C_

map%5C_tilenames (visited on 07/2017).

[95] OpenStreetMap contributors. Transiki. url: http : / / wiki .

openstreetmap.org/wiki/Transiki (visited on 10/2017).

[96] OpenStreetMap Fonudation (OSMF). OpenStreetMap. url: https://

www.openstreetmap.org (visited on 10/2017).

[97] OpenTripPlanner. url: http://www.opentripplanner.org (visited
on 07/2017).

[98] OpenTripPlanner on Github. url: https : / / github . com /

opentripplanner/OpenTripPlanner (visited on 07/2017).

[99] Österreichische Länder bzw. Ämter der Landesregierung.
Graphenintegrations-Plattform GIP. url: http://www.gip.gv.at

(visited on 07/2017).

[100] M. Over. OpenDEM. url: http://www.opendem.info (visited on
10/2017).

[101] S. Paganotti. Generate an isochrone map using Google Maps Api. url:
http : / / sandropaganotti . com / generate - an - isochrone - map -

using-google-maps-api (visited on 07/2017).

[102] D. A. Papa and I. L. Markov. “Hypergraph Partitioning and Cluster-
ing”. In: Handbook of Approximation Algorithms and Metaheuristics.
2007, pp. 61–1.

[103] pgRouting Community. pgRouting. url: http://pgrouting.org (vis-
ited on 10/2017).

[104] PostGIS Project Steering Committee (PSC). PostGIS. url: https:

//postgis.net (visited on 10/2017).

[105] Proceedings of the 28th GI-Workshop Grundlagen von Datenbanken
(GvDB), Nörten Hardenberg, Germany, May 24 - 27. 2016.

[106] E. Pyrga, F. Schulz, D. Wagner, and C. D. Zaroliagis. “Efficient Models
for Timetable Information in Public Transportation Systems”. In: ACM
Journal of Experimental Algorithmics 12 (2007).

[107] U. Rainer. “Evaluation of spatial database queries regarding their per-
formance”. Master Thesis. University of Innsbruck, Dec. 2016.

154

http://revenant.ca/www/postgis/workshop/indexing.html
http://revenant.ca/www/postgis/workshop/indexing.html
http://wiki.openstreetmap.org/wiki/Isochrone
https://wiki.openstreetmap.org/wiki/Slippy%5C_map%5C_tilenames
https://wiki.openstreetmap.org/wiki/Slippy%5C_map%5C_tilenames
http://wiki.openstreetmap.org/wiki/Transiki
http://wiki.openstreetmap.org/wiki/Transiki
https://www.openstreetmap.org
https://www.openstreetmap.org
http://www.opentripplanner.org
https://github.com/opentripplanner/OpenTripPlanner
https://github.com/opentripplanner/OpenTripPlanner
http://www.gip.gv.at
http://www.opendem.info
http://sandropaganotti.com/generate-an-isochrone-map-using-google-maps-api
http://sandropaganotti.com/generate-an-isochrone-map-using-google-maps-api
http://pgrouting.org
https://postgis.net
https://postgis.net

Bibliography

[108] Rome2Rio Labs. Rome2Rio. url: https://www.rome2rio.com (visited
on 07/2017).

[109] S. Schröder, P. Karich, and M. Zilske. Graphhopper. url: https://

www.graphhopper.com (visited on 07/2017).

[110] D. Schultes. “Route Planning in Road Networks”. In: Science 316.5824
(2007), p. 566.

[111] K. Schwarz. The Archive of Interesting Code. url: http : / / www .

keithschwarz.com/interesting (visited on 09/2017).

[112] C. E. Shannon. “Communication in the Presence of Noise”. In: Pro-
ceedings of the Institute of Radio Engineers (IRE) 37.1 (Jan. 1949),
pp. 10–21.

[113] D. Silbernagl, N. Krismer, N. Augsten, and G. Specht. “Recommending
OSM Tags To Improve Metadata Quality”. In: ACM, 2017.

[114] D. Silbernagl, N. Krismer, M. Malfertheiner, and G. Specht. “Opti-
mization of Digital Elevation Models for Routing”. In: Proceedings of
the 28th GI-Workshop Grundlagen von Datenbanken (GvDB), Nörten
Hardenberg, Germany, May 24 - 27. 2016, pp. 103–108.

[115] D. Silbernagl, N. Krismer, and G. Specht. “Comparing OSM Area-
Boundary Data to DBpedia”. In: Proceedings of the 12th International
Symposium on Open Collaboration, OpenSym 2016, Berlin, Germany,
August 17 - 19. 2016, 11:1–11:4.

[116] D. Silbernagl, N. Krismer, and G. Specht. “osmpg2java - Konvertierung
von OSM-Datenbankelementen zu JTS-Objekten”. In: AGIT Journal
2 (2016), pp. 179–184.

[117] Società Autobus Servizi d’Area (SASA) AG. SASAbus: Open Data &
APIs. url: http://sasabus.org/opendata (visited on 10/2017).

[118] K. Stolze. “SQL/MM Spatial – The Standard to Manage Spatial Data
in a Relational Database System”. In: Proceedings of Datenbanksysteme
in Business, Technologie und Web (BTW). 2003, pp. 247–264.

[119] The PostgreSQL Global Development Group. PostgreSQL. url:
https://www.postgresql.org (visited on 10/2017).

[120] S. Tischer and M. Mailer. “NaWo-a Tool for More Sustainable Residen-
tial Location Choice”. In: Transportation Research Procedia 19 (2016),
pp. 109–118.

[121] J. Topf. TagInfo. url: https://taginfo.openstreetmap.org/ (vis-
ited on 10/2017).

[122] R. J. Trudeau. Introduction to Graph Theory. Courier Corporation,
2013.

155

https://www.rome2rio.com
https://www.graphhopper.com
https://www.graphhopper.com
http://www.keithschwarz.com/interesting
http://www.keithschwarz.com/interesting
http://sasabus.org/opendata
https://www.postgresql.org
https://taginfo.openstreetmap.org/

Bibliography

[123] Universität Innsbruck and Münchner Verkehrs- und Tarifverbund
GmbH and Research Studios Austria Forschungsgesellschaft mbH.
nawo - Nachhaltige Wohnstandortentscheidungen. url: http://www.

wowohnen.eu (visited on 07/2017).

[124] Verkehrsauskunft Österreich. Verkehrsauskunft Österreich (VAO). url:
https://www.verkehrsauskunft.at (visited on 07/2017).

[125] Walk Score. Professional Travel Time API. url: https : / / www .

walkscore.com/professional/travel- time- api.php (visited on
07/2017).

[126] S. Wehrmeyer. Mapnificent. url: http://www.mapnificent.net (vis-
ited on 07/2017).

[127] D. B. West. Introduction to Graph Theory. Vol. 2. Prentice hall Upper
Saddle River, 2001.

[128] R. J. Wilson. Introduction to Graph Theory. 1972.

[129] J. Winder. “Echtzeit-Visualisierung von interaktiven Landkarten”.
Bachelor Thesis. University of Innsbruck.

[130] WNYC Data News Team. Travel Time NYC. url: https://project.

wnyc.org/transit-time (visited on 07/2017).

[131] X. Xiao, B. Yao, and F. Li. “Optimal location queries in road network
databases”. In: Proceedings of the 27th IEEE International Conference
on Data Engineering (ICDE). IEEE. 2011, pp. 804–815.

[132] W. YiHong and L. YongJiang. “An Isoline Generating Algorithm based
on Delaunay”. In: Proceedings of the 2nd International Conference on
Computer Engineering and Technology (ICCET). Vol. 7. IEEE. 2010,
pp. V7-173–V7-176.

156

http://www.wowohnen.eu
http://www.wowohnen.eu
https://www.verkehrsauskunft.at
https://www.walkscore.com/professional/travel-time-api.php
https://www.walkscore.com/professional/travel-time-api.php
http://www.mapnificent.net
https://project.wnyc.org/transit-time
https://project.wnyc.org/transit-time

	Abstract
	Contents
	Introduction
	Motivation
	Different Types of Reachability Analyses
	Research Objectives and Contributions
	Publications
	Thesis Outline

	Related Work
	Publications
	Systems

	Defining Isochrones
	Networks and Graphs
	Spatial Networks
	Transportation Networks
	Multimodal Spatial Networks
	Calculations in Multimodal Spatial Networks

	Real-world Networks
	Geographical Information
	Schedule Based Information

	Existing Algorithms for the Computation of Isochrones
	In-Memory Computation
	Incremental Expansion
	Multimodal Incremental Network Expansion
	Optimizing the Memory Footprint
	Loading Data using Ranges

	Extending and Improving Isochrone Algorithms
	Network Expansion Revisited
	Batching Multiple Database Requests
	Range Shape Variation
	Incremental Calculation of Isochrones
	Challenges for Incremental Calculation
	Types of Calculation

	Enhancements on Isochrone Application
	Averaged Isochrones
	Time-invariant Isochrones
	Elevation Aware Isochrones
	User Tailored Isochrones

	Generalizing Dataset Creation
	Street Network Extraction
	Public Transport Schedules
	Data Merging
	Dataset Optimization
	Elevation Data
	Computed Information

	Exporting and Providing Datasets

	The Application IsoMap
	System Architecture
	Operating Principle
	Features of IsoMap
	Visualization of Isochrones
	Vertex Expiration Information
	Public Transportation System Usage
	Spatial analyses
	Averaged and Time-invariant Isochrones
	Traversing of Areas/Places

	Evaluation
	Evaluation System
	Datasets under Test
	Choosing the Data Structure
	Determination of the Best Loading Ranges
	Determination of the Adaptive Tile Ranges
	Memory Experiments
	Runtime Experiments
	Break-Even Points and Network Independence
	Elevation aware performance

	Conclusion
	Summary
	Future Research Directions

	Appendix
	Way Type Classes

	List of Algorithms
	List of Figures
	List of Tables
	Bibliography

